一、opencv的示例模型文件

 
使用Torch模型【OpenCV对各种模型兼容并包,起到胶水作用】,
下载地址:
fast_neural_style_eccv16_starry_night.t7
fast_neural_style_instance_norm_feathers.t7
http://cs.stanford.edu/people/jcjohns/fast-neural-style/models/instance_norm/feathers.t7

二、示例代码
 
代码流程均较简单:图像转Blob,forward,处理输出结果,显示。【可以说是OpenCV Dnn使用方面的经典入门,对于我们对流程配置、参数理解都有很好帮助】
 
c++代码如下:
 
// This script is used to run style transfer models from '
// https://github.com/jcjohnson/fast-neural-style using OpenCV
 
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
 
using namespace cv;
using namespace cv::dnn;
using namespace std;
 
 
int main(int argc, char **argv)
{
    string modelBin = "../../data/testdata/dnn/fast_neural_style_instance_norm_feathers.t7";
    string imageFile = "../../data/image/chicago.jpg";
 
    float scale = 1.0;
    cv::Scalar mean { 103.939, 116.779, 123.68 };
    bool swapRB = false;
    bool crop = false;
    bool useOpenCL = false;
 
    Mat img = imread(imageFile);
    if (img.empty()) {
        cout << "Can't read image from file: " << imageFile << endl;
        return 2;
    }
 
    // Load model
    Net net = dnn::readNetFromTorch(modelBin);
    if (useOpenCL)
        net.setPreferableTarget(DNN_TARGET_OPENCL);
 
    // Create a 4D blob from a frame.
    Mat inputBlob = blobFromImage(img,scale, img.size(),mean,swapRB,crop);
 
    // forward netword
    net.setInput(inputBlob);
    Mat output = net.forward();
 
    // process output
    Mat(output.size[2], output.size[3], CV_32F, output.ptr<float>(0, 0)) += 103.939;
    Mat(output.size[2], output.size[3], CV_32F, output.ptr<float>(0, 1)) += 116.779;
    Mat(output.size[2], output.size[3], CV_32F, output.ptr<float>(0, 2)) += 123.68;
 
    std::vector<cv::Mat> ress;
    imagesFromBlob(output, ress);
 
    // show res
    Mat res;
    ress[0].convertTo(res, CV_8UC3);
    imshow("reslut", res);
 
    imshow("origin", img);
 
    waitKey();
    return 0;
}

 
三、演示
fast_neural_style_instance_norm_feathers.t7的演示效果

fast_neural_style_eccv16_starry_night.t7的演示效果:
 

我认为对简笔画的效果不是太好
通过重新作用于原始图片,我认识到这个模型采用的很可能是局部图片

那么这些模型如何训练出来?这里也给出了很多帮助:

Training new models

To train new style transfer models, first use the scriptscripts/make_style_dataset.py to create an HDF5 file from folders of images.You will then use the script train.lua to actually train models.

Step 1: Prepare a dataset

You first need to install the header files for Python 2.7 and HDF5. On Ubuntuyou should be able to do the following:

sudo apt-get -y install python2.7-dev
sudo apt-get install libhdf5-dev

You can then install Python dependencies into a virtual environment:

virtualenv .env                  # Create the virtual environmentsource .env/bin/activate         # Activate the virtual environment
 
pip install -r requirements.txt 

# Install Python dependencies# Work for a while ...

 
deactivate                      

# Exit the virtual environment

With the virtual environment activated, you can use the scriptscripts/make_style_dataset.py to create an HDF5 file from a directory oftraining images and a directory of validation images:

python scripts/make_style_dataset.py \
  --train_dir path/to/training/images \
  --val_dir path/to/validation/images \
  --output_file path/to/output/file.h5

All models in thisrepository were trained using the images from theCOCO dataset.

The preprocessing script has the following flags:

  • --train_dir: Path to a directory of training images.
  • --val_dir: Path to a directory of validation images.
  • --output_file: HDF5 file where output will be written.
  • --height, --width: All images will be resized to this size.
  • --max_images: The maximum number of images to use for trainingand validation; -1 means use all images in the directories.
  • --num_workers: The number of threads to use.

Step 2: Train a model

After creating an HDF5 dataset file, you can use the script train.lua totrain feedforward style transfer models. First you need to download aTorch version of theVGG-16 modelby running the script

bash models/download_vgg16.sh

This will download the file vgg16.t7 (528 MB) to the models directory.

You will also need to installdeepmind/torch-hdf5which gives HDF5 bindings for Torch:

luarocks install https://raw.githubusercontent.com/deepmind/torch-hdf5/master/hdf5-0-0.rockspec

You can then train a model with the script train.lua. For basic usage thecommand will look something like this:

th train.lua \
  -h5_file path/to/dataset.h5 \
  -style_image path/to/style/image.jpg \
  -style_image_size 384 \
  -content_weights 1.0 \
  -style_weights 5.0 \
  -checkpoint_name checkpoint \
  -gpu 0

The full set of options for this script are described here.


OpenCv dnn模块扩展研究(1)--style transfer的更多相关文章

  1. 如何使用 Opencv dnn 模块调用 Caffe 预训练模型?

    QString modelPrototxt = "D:\\Qt\\qmake\\CaffeModelTest\\caffe\\lenet.prototxt"; QString mo ...

  2. 手把手教你使用LabVIEW OpenCV DNN实现手写数字识别(含源码)

    @ 目录 前言 一.OpenCV DNN模块 1.OpenCV DNN简介 2.LabVIEW中DNN模块函数 二.TensorFlow pb文件的生成和调用 1.TensorFlow2 Keras模 ...

  3. OpenCV自带dnn的Example研究(4)— openpose

    这个博客系列,简单来说,今天我们就是要研究 https://docs.opencv.org/master/examples.html下的 6个文件,看看在最新的OpenCV中,它们是如何发挥作用的. ...

  4. OpenCV自带dnn的Example研究(3)— object_detection

    这个博客系列,简单来说,今天我们就是要研究 https://docs.opencv.org/master/examples.html下的 6个文件,看看在最新的OpenCV中,它们是如何发挥作用的. ...

  5. [C4W4] Convolutional Neural Networks - Special applications: Face recognition & Neural style transfer

    第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recogni ...

  6. fast neural style transfer图像风格迁移基于tensorflow实现

    引自:深度学习实践:使用Tensorflow实现快速风格迁移 一.风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“ ...

  7. (E2E_L2)GOMfcTemplate在vs2017上的运行并融合Dnn模块

    GOMfcTemplate一直运行在VS2012上运行的,并且开发出来了多个产品.在技术不断发展的过程中,出现了一些新的矛盾:1.由于需要使用DNN模块,而这个模块到了4.0以上的OpenCV才支持的 ...

  8. 神经风格转换Neural Style Transfer a review

    原文:http://mp.weixin.qq.com/s/t_jknoYuyAM9fu6CI8OdNw 作者:Yongcheng Jing 等 机器之心编译 风格迁移是近来人工智能领域内的一个热门研究 ...

  9. 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer

    Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...

随机推荐

  1. Spring Boot 配置文件中的花样

    原文:https://www.cnblogs.com/didispace/p/11002732.html 在快速入门一节中,我们轻松的实现了一个简单的RESTful API应用,体验了一下Spring ...

  2. python3_pygame游戏窗口创建

    python3利用第三方模块pygame创建游戏窗口 步骤1.导入pygame模块 步骤2.初始化pygame模块 步骤3.设置游戏窗口大小 步骤4.定义游戏窗口背景颜色 步骤5.开始循环检测游戏窗口 ...

  3. #2590. 「NOIP2009」最优贸易

    C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道 ...

  4. HTTP和HTTPS的区别和常见的面试题

    本篇会着重介绍http和https的区别和常见的面试题 常见的http和https面试题: Http与Https的基本概念和他们的区别 HTTPS工作原理 常用的HTTP方法有哪些 GET方法与POS ...

  5. node gyp编译所需要的环境

    安装ms的build工具包,自带python npm install --global --production windows-build-tools

  6. 题解 UVa10780

    题目大意 多组数据,每组数据给定两个整数 \(m,n\),输出使 \(n\%m^k=0\) 的最大的 \(k\).如果 \(k=0\) 则输出Impossible to divide. 分析 计数水题 ...

  7. 关于Djiango中 前端多对多字段点(,)的显示问题

    去除点的方法: <td> {% for roles_son in roles.permissions.all %} {% if forloop.last %} # 利用模板语言中的循环机制 ...

  8. CodeForces - 55D - Beautiful numbers(数位DP,离散化)

    链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...

  9. go html

    package main import ( "fmt" "html/template" "net/http" ) type User str ...

  10. 使用socket.io实现多房间通信聊天室

    websocket的实现有很多种,像ws和socket.io,这里使用的是socket.io来实现多房间的效果. 这里的使用没有使用socket.io官方提供的namespace和room,而是完全通 ...