上采样(upsampling)一般包括2种方式:

第二种方法如何用pytorch实现可见上面的链接

这里想要介绍的是如何使用pytorch实现第一种方法:

举例:

1)使用torch.nn模块实现一个生成器为:

import torch.nn as nn
import torch.nn.functional as F class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvLayer, self).__init__()
padding = kernel_size //
self.reflection_pad = nn.ReflectionPad2d(padding)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x):
out = self.reflection_pad(x)
out = self.conv(out) return out class Generator(nn.Module):
def __init__(self, in_channels):
super(Generator, self).__init__()
self.in_channels = in_channels self.encoder = nn.Sequential(
ConvLayer(self.in_channels, , , ),
nn.BatchNorm2d(),
nn.ReLU(),
ConvLayer(, , , ),
nn.BatchNorm2d(),
nn.ReLU(),
ConvLayer(, , , ),
) upsample = nn.Upsample(scale_factor=, mode='bilinear', align_corners=True)
self.decoder = nn.Sequential(
upsample,
nn.Conv2d(, , ),
nn.BatchNorm2d(),
nn.ReLU(),
upsample,
nn.Conv2d(, , ),
nn.BatchNorm2d(),
nn.ReLU(),
upsample,
nn.Conv2d(, , ),
nn.Tanh()
) def forward(self, x):
x = self.encoder(x)
out = self.decoder(x) return out def test():
net = Generator()
for module in net.children():
print(module)
x = Variable(torch.randn(,,,))
output = net(x)
print('output :', output.size())
print(type(output)) if __name__ == '__main__':
test()

返回:

model.py .Sequential(
(): ConvLayer(
(reflection_pad): ReflectionPad2d((, , , ))
(conv): Conv2d(, , kernel_size=(, ), stride=(, ))
)
(): BatchNorm2d(, eps=1e-, momentum=0.1, affine=True, track_running_stats=True)
(): ReLU()
(): ConvLayer(
(reflection_pad): ReflectionPad2d((, , , ))
(conv): Conv2d(, , kernel_size=(, ), stride=(, ))
)
(): BatchNorm2d(, eps=1e-, momentum=0.1, affine=True, track_running_stats=True)
(): ReLU()
(): ConvLayer(
(reflection_pad): ReflectionPad2d((, , , ))
(conv): Conv2d(, , kernel_size=(, ), stride=(, ))
)
)
Sequential(
(): Upsample(scale_factor=, mode=bilinear)
(): Conv2d(, , kernel_size=(, ), stride=(, ))
(): BatchNorm2d(, eps=1e-, momentum=0.1, affine=True, track_running_stats=True)
(): ReLU()
(): Upsample(scale_factor=, mode=bilinear)
(): Conv2d(, , kernel_size=(, ), stride=(, ))
(): BatchNorm2d(, eps=1e-, momentum=0.1, affine=True, track_running_stats=True)
(): ReLU()
(): Upsample(scale_factor=, mode=bilinear)
(): Conv2d(, , kernel_size=(, ), stride=(, ))
(): Tanh()
)
output : torch.Size([, , , ])
<class 'torch.Tensor'>

但是这个会有警告:

 UserWarning: nn.Upsample is deprecated. Use nn.functional.interpolate instead.

可使用torch.nn.functional模块替换为:

import torch.nn as nn
import torch.nn.functional as F class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvLayer, self).__init__()
padding = kernel_size //
self.reflection_pad = nn.ReflectionPad2d(padding)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x):
out = self.reflection_pad(x)
out = self.conv(out) return out class Generator(nn.Module):
def __init__(self, in_channels):
super(Generator, self).__init__()
self.in_channels = in_channels self.encoder = nn.Sequential(
ConvLayer(self.in_channels, , , ),
nn.BatchNorm2d(),
nn.ReLU(),
ConvLayer(, , , ),
nn.BatchNorm2d(),
nn.ReLU(),
ConvLayer(, , , ),
) self.decoder1 = nn.Sequential(
nn.Conv2d(, , ),
nn.BatchNorm2d(),
nn.ReLU()
)
self.decoder2 = nn.Sequential(
nn.Conv2d(, , ),
nn.BatchNorm2d(),
nn.ReLU()
)
self.decoder3 = nn.Sequential(
nn.Conv2d(, , ),
nn.Tanh()
) def forward(self, x):
x = self.encoder(x)
x = F.interpolate(x, scale_factor=, mode='bilinear', align_corners=True)
x = self.decoder1(x)
x = F.interpolate(x, scale_factor=, mode='bilinear', align_corners=True)
x = self.decoder2(x)
x = F.interpolate(x, scale_factor=, mode='bilinear', align_corners=True)
out = self.decoder3(x) return out def test():
net = Generator()
for module in net.children():
print(module)
x = Variable(torch.randn(,,,))
output = net(x)
print('output :', output.size())
print(type(output)) if __name__ == '__main__':
test()

返回:

model.py .Sequential(
(): ConvLayer(
(reflection_pad): ReflectionPad2d((, , , ))
(conv): Conv2d(, , kernel_size=(, ), stride=(, ))
)
(): BatchNorm2d(, eps=1e-, momentum=0.1, affine=True, track_running_stats=True)
(): ReLU()
(): ConvLayer(
(reflection_pad): ReflectionPad2d((, , , ))
(conv): Conv2d(, , kernel_size=(, ), stride=(, ))
)
(): BatchNorm2d(, eps=1e-, momentum=0.1, affine=True, track_running_stats=True)
(): ReLU()
(): ConvLayer(
(reflection_pad): ReflectionPad2d((, , , ))
(conv): Conv2d(, , kernel_size=(, ), stride=(, ))
)
)
Sequential(
(): Conv2d(, , kernel_size=(, ), stride=(, ))
(): BatchNorm2d(, eps=1e-, momentum=0.1, affine=True, track_running_stats=True)
(): ReLU()
)
Sequential(
(): Conv2d(, , kernel_size=(, ), stride=(, ))
(): BatchNorm2d(, eps=1e-, momentum=0.1, affine=True, track_running_stats=True)
(): ReLU()
)
Sequential(
(): Conv2d(, , kernel_size=(, ), stride=(, ))
(): Tanh()
)
output : torch.Size([, , , ])
<class 'torch.Tensor'>

pytorch 不使用转置卷积来实现上采样的更多相关文章

  1. 【python实现卷积神经网络】上采样层upSampling2D实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  2. pytorch torch.nn 实现上采样——nn.Upsample

    Vision layers 1)Upsample CLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align ...

  3. 由浅入深:CNN中卷积层与转置卷积层的关系

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...

  4. 上采样 及 Sub-pixel Convolution (子像素卷积)

    参考:https://blog.csdn.net/leviopku/article/details/84975282 参考:https://blog.csdn.net/g11d111/article/ ...

  5. 直接理解转置卷积(Transposed convolution)的各种情况

    使用GAN生成图像必不可少的层就是上采样,其中最常用的就是转置卷积(Transposed Convolution).如果把卷积操作转换为矩阵乘法的形式,转置卷积实际上就是将其中的矩阵进行转置,从而产生 ...

  6. 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv

    搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...

  7. CNN:转置卷积输出分辨率计算

    上一篇介绍了卷积的输出分辨率计算,现在这一篇就来写下转置卷积的分辨率计算.转置卷积(Transposed convolution),转置卷积也有叫反卷积(deconvolution)或者fractio ...

  8. pytorch(13)卷积层

    卷积层 1. 1d/2d/3d卷积 Dimension of Convolution 卷积运算:卷积核在输入信号(图像)上滑动,相应位置上进行乘加 卷积核:又称为滤波器,过滤器,可认为是某种模式,某种 ...

  9. 『TensotFlow』转置卷积

    网上解释 作者:张萌链接:https://www.zhihu.com/question/43609045/answer/120266511来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业 ...

随机推荐

  1. GT源码阅读

    昨天读了一点GT的代码,做个笔记. 参考阅读顺序:https://gt.qq.com/docs/a/UseGtWithBroadcast.txt 在上面的doc上面找到了对应的板块的代码. 1.采集本 ...

  2. PHP——curl设置请求头需要注意哪些

    前言 在设置这个请求头上踩了一些坑,此文记录下. 步骤 设置请求头 curl_setopt($ch, CURLOPT_HTTPHEADER, $header); 请求头写法 一定不要忘记:不然进行请求 ...

  3. HTTPS——https下的静态资源中如何使用http的地址

    前言 今天在改博皮的时候,将一些图片上传到七牛,但是引入的时候出问题了,因为七牛cnd设置的不是https域名,所以加载资源的时候导致自动转为https请求. 步骤 错误的写法 background: ...

  4. SpringBoot基础及FreeMarker模板

    案例springboot_freemarker application.properties配置文件 ###FreeMarker配置 spring.freemarker.template-loader ...

  5. PHP操作数据库(以MySQL为例)

    一.开启扩展配置: 在php.ini的extension板块中增加一行extension=php_mysqli.dll 重启PHP,在phpinfo查看 <?php echo phpinfo() ...

  6. [matlab工具箱] 神经网络Neural Net

    //目的是学习在BP神经网络的基础上添加遗传算法,蚁群算法等优化算法来优化网络,这是后话. 先简单了解了MATLAB中的神经网络工具箱,工具箱功能还是非常强大的,已经可以拟合出非常多的曲线来分析了. ...

  7. 2017.10.3 国庆清北 D3T1 括号序列

    题目描述 LYK有一个括号序列,但这个序列不一定合法. 一个合法的括号序列如下: ()是合法的括号序列. 若A是合法的括号序列,则(A)是合法的括号序列. 若A和B分别是合法的括号序列,则AB是合法的 ...

  8. AttributeError: module 'tensorflow' has no attribute 'set_random_seed'

    anaconda3 python3.7 安装好tensorflow 后出现上面的问题,原因是安装的tensorflow版本是2.0的,所以使用以前的代码tensorflow中的函数不兼容.

  9. linux 查看文件内容的几种命令

    cat #将文件内容输出到屏幕head #查看文件开头N行tail #查看文件末尾N行tailf #动态的查看的写入,有写入时屏幕输出vim.vi #文件编辑器,也可以当是查看文件{进入文件}grep ...

  10. CLion201914 下载安装

    链接:https://pan.baidu.com/s/12Gzo8gL3iUFoL5wok6L_BQ  密码:7vw4 56ZS5PQ1RF-eyJsaWNlbnNlSWQiOiI1NlpTNVBRM ...