Econ 493 A1 - Fall 2019
Econ 493 A1 - Fall 2019
Homework 4
Assignment Information
This assignment is due on Monday November 18 at 11:59 am.
Submit the assignment in the locked box in the Department of Economics General Office
(Tory 8-14). Note that the General Office is CLOSED daily from 12-1 pm and after 4:00 pm.
Late assignments will receive NO MARKS.
Answers to computing exercises must include R commands and output files when applicable.
All answers must be transcribed to your written answers which must be separate from the R
printout.
Total marks = 50 (5 questions).
Exercise 1
Electricity consumption is often modelled as a function of temperature. Temperature is
measured by daily heating degrees and cooling degrees. Heating degrees is 18◦C minus the
average daily temperature when the daily average is below 18◦C; otherwise it is zero. This
provides a measure of our need to heat ourselves as temperature falls. Cooling degrees
measures our need to cool ourselves as the temperature rises. It is defined as the average
代做Econ 493作业、data留学生作业代写
daily temperature minus 18◦C when the daily average is above 18◦C; otherwise it is zero.
Let yt denote the monthly total of kilowatt-hours of electricity used, let x1,t denote the
monthly total of heating degrees, and let x2,t denote the monthly total of cooling degrees.
An analyst fits the following model to a set of such data:
a. What sort of ARIMA model is identified for ηt?
b. The estimated coefficients of β1 and β2 are found to be greater than zero. Explain what
the estimates of β1 and β2 tell us about electricity consumption.
c. Describe how this model could be used to forecast electricity demand for the next 12
months.
d. Explain why the ηt term should be modelled with an ARIMA model rather than
modeling the data using a standard regression package. In your discussion, comment on
the properties of the estimates, the validity of the standard regression results, and the
importance of the ηt model in producing forecasts.
1
Exercise 2
Given an initial value for y0, re-write each yt
in terms of y0 and past innovations (that is, εi
for i = 0, . . . , t). Also, find the h-step-ahead forecast for h = 1, 2.
a. yt = yt−1 + εt + 0.5εt−1
b. yt = 1.1yt−1 + εt
c. yt = yt−1 + 1 + εt
d. yt = yt−1 + t + εt
Exercise 3 (R)
The file us_macro_quarterly.csv contains quarterly data on several macroeconomic series
for the United States. The variable P CEP is the price index for personal consumption
expenditures from the US National Income and Product Accounts. In this exercise you will
construct forecasting models for the rate of inflation, based on P CEP. For this analysis, use
the sample period 1963Q1 to 2012Q4.
a. Compute the inflation rate, inflt = 400 × [log(P CEPt) − log(P CEPt−1)]. What are
the units of infl?
b. Use R to plot the inflation rate series (infl) and the ACF. Does the series appear to be
stationary? Explain.
c. Use R to plot the change in the inflation rate series (infl0
) and the ACF. Does the
differenced series appear to be stationary? Explain.
d. Use the ADF test to determine d.
e. Compute and plot the one-step-ahead quarterly forecasts of the inflation rate for the
pseudo out-of-sample period 2003Q1 to 2012Q4 (40 quarters) using the following models:
(i) an ARIMA(2,0,0) and (ii) and ARIMA(2,1,0). Compare your results in terms of the
RMSE.
f. Are the pseudo out-of-sample forecasts biased? That is, do the forecast errors have a
non-zero mean?
Exercise 4 (R)
Consider the spurious regression problem with time series data. The file inflation.csv
contains 39 annual observations of the following variables (by columns): - Year: 1971-2009 -
Deaths: Total number of deaths, Canada - CPI: Consumer Price Index, Canada
a. Use the CPI series to compute the annual inflation rate, inflt = 100 × [log(CP It) −
log(CP It−1)] for the sample 1972–2009. Plot the time series.
b. Obtain the total number of deaths in Canada per 1000 people for the sample 1972–2009
(that is, divide the data by 1000). Plot the time series.
c. Use OLS to estimate the equation inflt = β0 + β1deadt + εt
. Is deaths significant at
the 5% level? What is the sign of the slope coefficient?
d. Relate your results in (c) to the spurious regression problem.
2
e. Use OLS to estimate the equation infl0
t = β0 + β1dead0
t + εt
. Is deaths significant at
the 5% level? What is the sign of the slope coefficient?
f. Use OLS to estimate the equation inflt = β0+β1deadt+β2time+εt
. Is deaths significant
at the 5% level? What is the sign of the slope coefficient?
Exercise 5 (R)
The file quarterly.csv contains the series of quarterly industrial production and the consumer’s
price index (CPI) for the US for the quarters 1960:Q1 to 2012:Q4.
a. Create the log change in the index of industrial production (indprod) as
lip0 = log(indprodt) − log(indprodt−1) and the inflation rate as inflt = log(CP It) −
log(CP It−1).
b. Determine if lip0 and inflt are stationary?
c. Estimate the bivariate VAR using three lags of each variable and a constant. Verify
that the three-lag specification is selected by the BIC, whereas the AIC selects five lags.
d. Perform the Granger causality tests. Verify that the F-statistic for the test that inflation
Granger-causes industrial production is 4.82 (with a significance level of 0.003) and that
the F-statistic for the test that industrial production Granger-causes inflation is 5.1050
(withh a significance level of 0.002).
因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com
微信:codehelp
Econ 493 A1 - Fall 2019的更多相关文章
- CMU15445 (Fall 2019) 之 Project#1 - Buffer Pool 详解
前言 这个实验有两个任务:时钟替换算法和缓冲池管理器,分别对应 ClockReplacer 和 BufferPoolManager 类,BufferPoolManager 会用 ClockReplac ...
- CMU15445 (Fall 2019) 之 Project#4 - Logging & Recovery 详解
前言 这是 Fall 2019 的最后一个实验,要求我们实现预写式日志.系统恢复和存档点功能,这三个功能分别对应三个类 LogManager.LogRecovery 和 CheckpointManag ...
- CMU15445 (Fall 2019) 之 Project#2 - Hash Table 详解
前言 该实验要求实现一个基于线性探测法的哈希表,但是与直接放在内存中的哈希表不同的是,该实验假设哈希表非常大,无法整个放入内存中,因此需要将哈希表进行分割,将多个键值对放在一个 Page 中,然后搭配 ...
- CMU15445 (Fall 2019) 之 Project#3 - Query Execution 详解
前言 经过前面两个实验的铺垫,终于到了给数据库系统添加执行查询计划功能的时候了.给定一条 SQL 语句,我们可以将其中的操作符组织为一棵树,树中的每一个父节点都能从子节点获取 tuple 并处理成操作 ...
- PSTAT 115 Homework4 课业解析
PSTAT 115 Homework4 课业解析 题意: 蒙特卡洛采样之拒绝采样 解析: 给定一个概率分布p(z)=p~(z)/Zp,p~(z)已知,Zp为归一化常数,为未知数.对该分布进行拒绝采样, ...
- Computing Science CMPT 361
Computing Science CMPT 361 Fall 2019Assignment #3Due date: November 27th at 11:59 pm.Ray TracingYou ...
- GrapeCity Documents for Excel 文档API组件 V2.2 新特性介绍
GrapeCity Documents for Excel 文档API组件 V2.2 正式发布,本次新版本包含诸多重量级产品功能,如:将带有形状的电子表格导出为 PDF.控制分页和电子表格内容.将Ex ...
- MIT6.S081/6.828 实验1:Lab Unix Utilities
Mit6.828/6.S081 fall 2019的Lab1是Unix utilities,主要内容为利用xv6的系统调用实现sleep.pingpong.primes.find和xargs等工具.本 ...
- 家里蹲大学数学杂志 Charleton University Mathematics Journal 官方目录[共七卷493期,6055页]
家里蹲大学数学杂志[官方网站]从由赣南师范大学张祖锦老师于2010年创刊;每年一卷, 自己有空则出版, 没空则搁置, 所以一卷有多期.本杂志至2016年12月31日共7卷493期, 6055页.既然做 ...
随机推荐
- 百度云BCC安装WordPress镜像
重装系统 在BCC实例中,重装系统选择WordPress. Centos 6.5 x64Apache 2.2.15: Web 主目录:/home/www/default 配置文件目录:/etc/htt ...
- web前端-框架jquery
1.jquery库 就是js的库 ,可以通过jquery语法简化js操作 ,如文档遍历 ,文档操作 ,事件处理 ,动画js定时器等等 2.引用 下载:https://www.bootcdn.cn/jq ...
- 微信小程序 自定义头部导航栏和导航栏背景图片 navigationStyle
这两天因为要做一个带背景的小程序头,哭了,小程序导航栏有背景也就算了,还得让导航栏上的背景顺下来,心态小崩.现在可以单独设置一个页面的小程序头了,但是前提是要微信7.0以上的版本,考虑到兼容性问题 ...
- ANDROID培训准备资料之项目结构简单介绍
Android Studio项目结构初步主要介绍下面几个文件夹,后续再补充 (1)java文件夹的介绍 (2)Res文件夹的介绍 (3)R文件的介绍 (4)Manifests文件夹的介绍 我们先看看整 ...
- pushad与popad
版权声明:本文为博主原创文章,转载请附上原文出处链接和本声明.2019-08-24,00:40:12作者By-----溺心与沉浮----博客园 PUSHAD与POPAD 这两条指令其实就是讲EAX,E ...
- 互联网渗透测试之Wireshark的高级应用
互联网渗透测试之Wireshark的高级应用 1.1说明 在本节将介绍Wireshark的一些高级特性 1.2. "Follow TCP Stream" 如果你处理TCP协议,想要 ...
- 常用linux系统监视软件
wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo ##epel源 yum install -y ...
- AssetBundleMaster_ReadMe_EN
Before we start use it, you'd better import it to an empty project, following the ReadMe to learn th ...
- 什么是微信小程序?简单介绍
1.微信小程序是一种全新的连接用户与服务的方式,它可以在微信内被便捷地获取和传播,同时具有色的使用体验. 2.手机端App的另外一种新的展现形式 3.无需下载过多占用手机内存的app,小程序直接打开 ...
- Flask框架之功能详解
1|0浏览目录 配置文件 路由系统 视图 请求相关 响应 模板渲染 session 闪现 中间件 蓝图(blueprint) 特殊装饰器 1|1配置文件 知识点 给你一个路径 "settin ...