本文通过MetaWeblog自动发布,原文及更新链接:https://extendswind.top/posts/technical/hadoop_block_placement_policy

大多数的叫法都是副本放置策略,实质上是HDFS对所有数据的位置放置策略,并非只是针对数据的副本。因此Hadoop的源码里有block replicator(configuration)、 BlockPlacementPolicy(具体逻辑源码)两种叫法。

主要用途:上传文件时决定文件在HDFS上存储的位置(具体到datanode上的具体存储介质,如具体到存储在哪块硬盘);rebalance、datanode退出集群、副本数量更改等导致数据移动的操作中,数据移动的具体位置。

BlockPlacementPolicy

BlockPlacementPolicy 作为虚基类提供了基本的接口,具体的子类重点实现下面 选择副本验证副本放置是否满足要求选择能够删除的副本 三个函数:

 /**
* 核心的副本放置策略实现,返回副本放置数量的存储位置
* **如果有效节点数量不够(少于副本数),返回尽可能多的节点,而非失败**
*
* @param srcPath 上传文件的路径
* @param numOfReplicas 除下面chosen参数里已经选择的datanode,还需要的副本数量
* @param writer 写数据的机器, null if not in the cluster. 一般用于放置第一个副本以降低网络通信
* @param chosen 已经选择的节点
* @param returnChosenNodes 返回结果里是否包含chosen的datanode
* @param excludedNodes 不选的节点
* @param blocksize 块大小
* @return 排序好的选择结果
*/
public abstract DatanodeStorageInfo[] chooseTarget(String srcPath,
int numOfReplicas,
Node writer,
List<DatanodeStorageInfo> chosen,
boolean returnChosenNodes,
Set<Node> excludedNodes,
long blocksize,
BlockStoragePolicy storagePolicy); /**
* 判断传入的放置方式是否符合要求
*/
abstract public BlockPlacementStatus verifyBlockPlacement(
DatanodeInfo[] locs, int numOfReplicas); /**
* 当副本数量较多时,选择需要删除的节点
*/
abstract public List<DatanodeStorageInfo> chooseReplicasToDelete(
Collection<DatanodeStorageInfo> candidates, int expectedNumOfReplicas,
List<StorageType> excessTypes, DatanodeDescriptor addedNode,
DatanodeDescriptor delNodeHint);

Hadoop 提供的 BlockPlacementPolicy 实现

Hadoop提供了BlockPlacementPolicyDefault、BlockPlacementPolicyWithNodeGroup、AvailableSpaceBlockPlacementPolicy三种实现(hadoop 2.7.7)。

其中BlockPlacementPolicyDefault是经典三副本策略的实现:第一个副本尽可能放在写入数据的节点,第二个副本放在与第一个副本不在同一机架下的节点,第三个副本与第二副本放在同一个机架。

通过改变dfs.block.replicator.classname 能够选择具体的实现类,默认值为org.apache.hadoop.hdfs.server.blockmanagement.BlockPlacementPolicyDefault。(Hadoop 2.7.7下,貌似不同版本的Hadoop的命名还不一样,而且2.7.7默认的配置文件里还没有,需要在源码中查)

BlockPlacementPolicyDefault 源码阅读

  public abstract DatanodeStorageInfo[] chooseTarget(String srcPath,
int numOfReplicas,
Node writer,
List<DatanodeStorageInfo> chosen,
boolean returnChosenNodes,
Set<Node> excludedNodes,
long blocksize,
BlockStoragePolicy storagePolicy);

chooseTarget函数实现了具体的三副本策略。各种特殊情况(如只有1个副本、datanode数量不够、集群拓扑不满足要求等)的考虑让代码看起来比较复杂,常规情况直接跟着调试代码走会跳过很多异常处理部分,便于裂解正常流程。

在副本的选择上用了各种带chooseTarget函数,注意有几个函数结果是通过参数传出而不是返回值。

主要实现思路:

  1. 各种变量初始化
  2. 考虑favoredNodes的放置
  3. 除满足条件的favoredNodes后的副本放置策略(三副本)
  4. 结果排序

首先

srcPath没有被考虑,被直接舍弃:

return chooseTarget(numOfReplicas, writer, chosenNodes, returnChosenNodes,
excludedNodes, blocksize, storagePolicy, flags); // ignore srcPath

因此默认的副本放置策略,在同一文件包含多个block时,每个block的存储位置独立考虑,并非存储在同一datanode

处理favoredNodes

上传文件时可以指定favoredNodes(默认为空),首先对favoredNodes所在的节点判断是否合适。如果满足条件的节点数还低于副本数,则添加新的副本。

 // --------------Choose favored nodes ---------------
// 从favored nodes中选择,在上传文件时可以指定
List<DatanodeStorageInfo> results = new ArrayList<>();
boolean avoidStaleNodes = stats != null
&& stats.isAvoidingStaleDataNodesForWrite(); int maxNodesAndReplicas[] = getMaxNodesPerRack(0, numOfReplicas);
numOfReplicas = maxNodesAndReplicas[0];
int maxNodesPerRack = maxNodesAndReplicas[1]; chooseFavouredNodes(src, numOfReplicas, favoredNodes,
favoriteAndExcludedNodes, blocksize, maxNodesPerRack, results,
avoidStaleNodes, storageTypes); // ---------------如果满足要求的favored nodes数量不足-----------
if (results.size() < numOfReplicas) {
// Not enough favored nodes, choose other nodes, based on block
// placement policy (HDFS-9393).
numOfReplicas -= results.size();
for (DatanodeStorageInfo storage : results) {
// add localMachine and related nodes to favoriteAndExcludedNodes
addToExcludedNodes(storage.getDatanodeDescriptor(),
favoriteAndExcludedNodes);
}
DatanodeStorageInfo[] remainingTargets =
chooseTarget(src, numOfReplicas, writer,
new ArrayList<DatanodeStorageInfo>(numOfReplicas), false,
favoriteAndExcludedNodes, blocksize, storagePolicy, flags);
for (int i = 0; i < remainingTargets.length; i++) {
results.add(remainingTargets[i]);
}
}

三副本选择

实现逻辑在 chooseTargetInOrder(…) 函数中

// 第一个副本的选择
if (numOfResults == 0) {
writer = chooseLocalStorage(writer, excludedNodes, blocksize,
maxNodesPerRack, results, avoidStaleNodes, storageTypes, true)
.getDatanodeDescriptor();
if (--numOfReplicas == 0) {
return writer;
}
} // 选择与第一个副本不在同一Rack下的第二个副本
final DatanodeDescriptor dn0 = results.get(0).getDatanodeDescriptor();
if (numOfResults <= 1) {
chooseRemoteRack(1, dn0, excludedNodes, blocksize, maxNodesPerRack,
results, avoidStaleNodes, storageTypes);
if (--numOfReplicas == 0) {
return writer;
}
} // 第三个副本
if (numOfResults <= 2) {
final DatanodeDescriptor dn1 = results.get(1).getDatanodeDescriptor();
// 第一、二副本在同一Rack下时选第三个副本
// (前面的favoredNodes以及集群条件可能造成这种情况)
if (clusterMap.isOnSameRack(dn0, dn1)) {
chooseRemoteRack(1, dn0, excludedNodes, blocksize, maxNodesPerRack,
results, avoidStaleNodes, storageTypes);
} else if (newBlock){ // 正常情况,第二副本的localRack下选第三副本
chooseLocalRack(dn1, excludedNodes, blocksize, maxNodesPerRack,
results, avoidStaleNodes, storageTypes);
} else { // 其它的以外
chooseLocalRack(writer, excludedNodes, blocksize, maxNodesPerRack,
results, avoidStaleNodes, storageTypes);
}
if (--numOfReplicas == 0) {
return writer;
}
} // 如果副本数量还没到0,剩下的副本随机选择
chooseRandom(numOfReplicas, NodeBase.ROOT, excludedNodes, blocksize,
maxNodesPerRack, results, avoidStaleNodes, storageTypes);
return writer;

再到具体的选择

选择具体的存储位置被上面包装到了 chooseRemoteRack 和 chooseLocalRack 两个函数。

实际调用时只是 chooseRandom 函数,在限定的rack下选择一个随机的节点。

源码阅读的几个注意

代码在直接阅读时各种跳,但主线思路比较明确。主要带来阅读困难的位置:

  1. 很多函数调用不是通过返回值传出结果,而是通过参数。
  2. 注意某些if后的return会直接返回结果,后面的代码不会被调用。
  3. 递归的形式多次调用同一个函数以选择多个副本。
  4. 很多代码为了避免一些特殊情况,可以暂时略过(如catch里的异常处理)。

修改HDFS默认的副本放置机制

可以选择直接复制或继承BlockPlacementPolicyDefault的实现,或者直接继承BlockPlacementPolicy类编写对应的接口具体实现。

将编译好的jar包放入$HADOOP_PREFIX/share/hadoop/common下(或者其它的Hadoop jar包路径)。

改变dfs.block.replicator.classname 为上面的实现类,要带包的名称。

RackAwareness 机架感知

Hadoop 并不能自动检测集群的机架状态,而是要预先设置机架的状态,通过脚本或java类将datanode的ip转换成具体的机架上的位置。

官方文档介绍了基本思路,虽然实现上介绍得不是太清楚,只要将输入的ip转换成”/rackNum”的形式即可。

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/RackAwareness.html

Hadoop 副本放置策略的源码阅读和设置的更多相关文章

  1. 详细讲解Hadoop源码阅读工程(以hadoop-2.6.0-src.tar.gz和hadoop-2.6.0-cdh5.4.5-src.tar.gz为代表)

    首先,说的是,本人到现在为止,已经玩过.                   对于,这样的软件,博友,可以去看我博客的相关博文.在此,不一一赘述! Eclipse *版本 Eclipse *下载 Jd ...

  2. Mac搭建Hadoop源码阅读环境

    1.本次Hadoop源码阅读环境使用的阅读工具是idea,Hadoop版本是2.7.3.需要安装的工具包括idea.jdk.maven.protobuf等 2.jdk,使用的版本是1.8版,在jdk官 ...

  3. Hadoop源码阅读环境搭建(IDEA)

    拿到一份Hadoop源码之后,经常关注的两件事情就是 1.怎么阅读?涉及IDEA和Eclipse工程搭建.IDEA搭建,选择源码,逐步导入即可:Eclipse可以选择后台生成工程,也可以选择IDE导入 ...

  4. 【深入浅出 Yarn 架构与实现】1-2 搭建 Hadoop 源码阅读环境

    本文将介绍如何使用 idea 搭建 Hadoop 源码阅读环境.(默认已安装好 Java.Maven 环境) 一.搭建源码阅读环境 一)idea 导入 hadoop 工程 从 github 上拉取代码 ...

  5. Spark源码阅读之存储体系--存储体系概述与shuffle服务

    一.概述 根据<深入理解Spark:核心思想与源码分析>一书,结合最新的spark源代码master分支进行源码阅读,对新版本的代码加上自己的一些理解,如有错误,希望指出. 1.块管理器B ...

  6. vnpy源码阅读学习(1):准备工作

    vnpy源码阅读学习 目标 通过阅读vnpy,学习量化交易系统的一些设计思路和理念. 通过阅读vnpy学习python项目开发的一些技巧和范式 通过vnpy的设计,可以用python复现一个小型简单的 ...

  7. CopyOnWriteArrayList源码阅读笔记

    简介 ArrayList是开发中使用比较多的集合,它不是线程安全的,CopyOnWriteArrayList就是线程安全版本的ArrayList.CopyOnWriteArrayList同样是通过数组 ...

  8. [源码阅读] 阿里SOFA服务注册中心MetaServer(1)

    [源码阅读] 阿里SOFA服务注册中心MetaServer(1) 目录 [源码阅读] 阿里SOFA服务注册中心MetaServer(1) 0x00 摘要 0x01 服务注册中心 1.1 服务注册中心简 ...

  9. 【原】AFNetworking源码阅读(六)

    [原]AFNetworking源码阅读(六) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这一篇的想讲的,一个就是分析一下AFSecurityPolicy文件,看看AF ...

随机推荐

  1. 14-2 SQL语言简介

    1.结构化查询语言(Structured Query Language,SQL),常被读作sequel,最初是由Microsoft.Sybase和Ashton-Tate这3家公司共同开发的. 2.Wi ...

  2. MVC-09安全

    部分8:添加安全. MVC应用程序安全性 Models文件夹包含表示应用程序模型的类. Visual Web Developer自动创建AccountModels.cs文件,该文件包含用于应用程序认证 ...

  3. 在编译内核的最后阶段出现sdhci_esdhc_imx_pdata未定义的错误

    遇到下面这种错误 在网上查找资料后,发现一篇好文,提出了良好的找错误的策略: (1)利用grep命令查看该变量在何处使用: (2)查看相应的头文件是否在Kconfig中被定义且在make menuco ...

  4. Programmingbydoing

    http://www.programmingbydoing.com/ 1. Modulus Animation public static void modulusAnimation() throws ...

  5. 安装xadmin模板依赖

    ### 安装xadmin模板依赖sudo pip3 install django-crispy-forms django-formtools django-import-export django-r ...

  6. [dev][nginx] 在阅读nginx代码之前都需要准备什么

    前言 以前,我读过nginx的源码,甚至还改过.但是,现在回想起来几乎回想不起任何东西, 只记得到处都是回调和异步,我的vim+ctags索引起来十分吃力. 几乎没有任何收获,都是因为当时打开代码就看 ...

  7. 【转】高性能网络编程3----TCP消息的接收

    这篇文章将试图说明应用程序如何接收网络上发送过来的TCP消息流,由于篇幅所限,暂时忽略ACK报文的回复和接收窗口的滑动. 为了快速掌握本文所要表达的思想,我们可以带着以下问题阅读: 1.应用程序调用r ...

  8. java操作redis(jedis)常用方法示例

    说明:redis命令和jedis方法名基本是一一对应的 Redis常用命令1 连接操作命令 ● quit:关闭连接(connection) ● auth:简单密码认证 ● help cmd: 查看cm ...

  9. Exchange 退信550 5.1.11 RESOLVER.ADR.ExRecipNotFound

    问题描述: 在Exchange 2013环境下,某客户将一个用户的邮箱test@abc.com禁用,过了几天又想连接该邮箱,但是却没有找到禁用的邮箱,然后客户就Enable-MailBox重新创建了一 ...

  10. 兼容火狐,Chrome,IE6,IE7,IE8的HTML换行写法

    本文链接:https://java-er.com/blog/html-break-line-firefox-chrome/ 兼容火狐,Chrome,IE6,IE7,IE8的HTML换行写法1.任意数据 ...