隐马尔科夫模型(Hidden Markov Models) 系列之一
转自:http://blog.csdn.net/eaglex/article/details/6376826
介绍(introduction)
通常我们总是对寻找某一段时间上的模式感兴趣,这些模式可能出现在很多领域:一个人在使用电脑的时候使用的命令的序列模式;一句话中的单词的序列;口语中的音素序列。总之能产生一系列事件的地方都能产生有用的模式。
考虑一个最简单的情况:有人(柯南?)试图从一块海藻来推断天气的情况。一些民间的传说认为“soggy”的海藻意味着潮湿(wet)的天气,“dry”的海藻预示着晴朗(sun)。如果海藻处于中间状态“damp”,那就无法确定了。但是,天气的情况不可能严格的按照海藻的状态来变化,所以我们可以说在一定程度上可能是雨天或是晴天。另一个有价值的信息是之前某些天的天气情况,结合昨天的天气和可以观察到的海藻的状态,我们就可以为今天的天气做一个较好的预报。
这是在我们这个系列的介绍中一个非常典型的系统。
- 首先我们介绍一个可以随时间产生概率性模型的系统,例如天气在晴天或者雨天之间变动。
- 接下来我们试图去预言我们所不能观察到的"隐形"的系统状态,在上面的例子中,能被观察到的序列就是海藻的状态吗,隐形的系统就是天气情况
- 然后我们看一下关于我们这个模型的一些问题,在上面那个例子中,也许我们想知道
- 如果我们观察一个星期每一天的海藻的状态,我们是否能知相应的其天气情况
- 如果给出一个海藻状态的序列,我们是否能判断是冬天还是夏天?我们假设,如果海藻干(dry)了一段时间,那就意味着是夏天如果海藻潮湿(soggy)了一段时间,那可能就是冬天。
生成模式(Generating Patterns)
- 确定的模式(Deterministic Patterns)
考虑交通灯的例子,一个序列可能是红-红/橙-绿-橙-红。这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替
我们可以注意到,每一个状态都只依赖于此前的状态,如果当前的是绿灯,那么接下来就是橙灯,这就是一个确定型的系统。确定型的系统更容易理解和分析,只要这些状态转移都是已知的。
- 不确定的模式(Non-Deterministic Patterns)
为了让之前那个天气的例子更贴近现实,我们可以添加一个状态-多云。和交通灯的例子不同,我们不能得到一个确定的状态转移系统,但是我们还是希望能得到一个天气的模式。
一种办法就是假设这个模型的每个状态都只依赖于之前的状态,这个假设被称为马尔科夫假设,这个假设可以大大的简化这个问题。显然,这个假设可能是一个非常糟糕的假设,导致很多重要的信息都丢失了。
当涉及到天气的时候,马尔科夫假设假设如果我们知道之间一些天的天气的信息,不考虑风力、气压等因素,那么我们就能预言今天的天气。当然,和其他许多例子一样,这个列子也是不合实际的。但是,这样一个简化的系统可以有利于我们的分析,所以我们通常接受这样的假设,因为我们知道这样的系统能让我们获得一些有用的信息,尽管不是十分准确的。
一个马尔科夫过程就是指过程中的每个状态的转移只依赖于之前的n个状态,这个过程被称为1个n阶的模型,其中n是影响转移的状态的数目。最简单的马尔科夫过程就是一阶过程,每一个状态的转移只依赖于其之间的那一个状态。注意这和确定型的系统不一样,因为这种装因是有概率的,而不是确定的。下面这个图展示了天气这个例子中所有可能的一阶转移:
注意一个含有M个状态的一阶过程有M的平方个状态转移。每一个转移的概率叫做状态转移概率(state transition probability),就是从一个状态转移到另一个状态的概率。这所有的M的平方个概率可以用一个状态转移矩阵来表示。注意这里有一个假设,概率不随时间的变化而变化,这又是一个不现实但很重要的假设。下面就是一个状态转移矩阵的列子:
这个矩阵的意思是,如果昨天是晴天,那么今天又50%的可能是晴天,37.5%的概率是阴天,12.5%的概率会下雨,很明显,每一行的和都是1。
为了初始化这样一个系统,我们需要一个初始的概率向量:
这个向量表示第一天是晴天。
到这里,我们就为一阶马尔科夫过程定义了以下三个部分:
- 状态:晴天、阴天和下雨
- 初始向量:定义系统在时间为0的时候的状态的概率
- 状态转移矩阵:每种天气转换的概率
所有的能被这样描述的系统都是一个马尔科夫过程。
- 总结(Summary)
我们为了找到随时间变化的模式,就试图去建立一个可以产生模式的过程模型。我们使用了具体的时间步骤、状态、并且做了马尔科夫假设。有了这些假设,这个能产生模式系统就是一个马尔科夫过程。一个马尔科夫过程包括一个初始向量和一个状态转移矩阵。关于这个假设需要注意的一点是状态转移概率不随时间变化。
隐马尔科夫模型(Hidden Markov Models) 系列之一的更多相关文章
- 隐马尔科夫模型(Hidden Markov Models) 系列之三
转自:http://blog.csdn.net/eaglex/article/details/6418219 隐马尔科夫模型(Hidden Markov Models) 定义 隐马尔科夫模型可以用一个 ...
- 隐马尔科夫模型(Hidden Markov Models) 系列之五
转自:http://blog.csdn.net/eaglex/article/details/6458541 维特比算法(Viterbi Algorithm) 找到可能性最大的隐藏序列 通常我们都有一 ...
- 隐马尔科夫模型(Hidden Markov Models) 系列之二
转自:http://blog.csdn.net/eaglex/article/details/6385204 隐含模式(Hidden Patterns) 当马尔科夫过程不够强大的时候,我们又该怎么办呢 ...
- 隐马尔科夫模型(Hidden Markov Models) 系列之四
转自:http://blog.csdn.net/eaglex/article/details/6430389 前向算法(Forward Algorithm) 一.如果计算一个可观察序列的概率? 1 ...
- 隐马尔科夫模型(Hidden Markov Models)
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...
- 隐马尔科夫模型(hidden Markov Model)
万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法 2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...
- 隐马尔科夫模型(hidden Markov model, HMM)
- 隐马尔可夫模型(Hidden Markov Model)
隐马尔可夫模型(Hidden Markov Model) 隐马尔可夫模型(Hidden Markov Model, HMM)是一个重要的机器学习模型.直观地说,它可以解决一类这样的问题:有某样事物存在 ...
- [综]隐马尔可夫模型Hidden Markov Model (HMM)
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更 ...
随机推荐
- docker-nginx
docker pull nginx docker run --name nginx -p 8080:80 -d nginx mkdir -p /data/nginx/www /data/nginx/l ...
- 【Spring IoC】依赖注入DI(四)
平常的Java开发中,程序员在某个类中需要依赖其它类的方法.通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理. Spring提出了依赖注入的思想,即依赖类不由程 ...
- 语音识别:从 WaveNet 到 Tacotron,再到 RNN-T
从 WaveNet 到 Tacotron,再到 RNN-T 谷歌再获语音识别新进展:利用序列转导来实现多人语音识别和说话人分类 雷锋网 AI 科技评论按:从 WaveNet 到 Tacotron,再到 ...
- SGD的动量(Momentum)算法
引入动量(Momentum)方法一方面是为了解决“峡谷”和“鞍点”问题:一方面也可以用于SGD 加速,特别是针对高曲率.小幅但是方向一致的梯度. 如果把原始的 SGD 想象成一个纸团在重力作用向下滚动 ...
- mysql 只有主键能自动增长么
不一定的,MySQL 每张表只能有1个自动增长字段,这个自动增长字段即可作为主键,也可以用作非主键使用,但是请注意将自动增长字段当做非主键使用时必须必须为其添加唯一索引,否则系统将会报错.例如:-- ...
- 论文阅读笔记六十一:Selective Kernel Networks(SKNet CVPR2019)
论文原址:https://arxiv.org/pdf/1903.06586.pdf github: https://github.com/implus/SKNet 摘要 在标准的卷积网络中,每层网络中 ...
- win10经常无法复制粘贴
两种方法尝试一下: 1. 在c:\windows\system32 目录下新建文件夹,命名为clip 2. 因为有道词典会监控并占用你的剪贴板,请尝试关闭有道词典的[取词]和[划词]功能,如果还不行就 ...
- Gogs配置(本地安装篇-Debian)
知识储备: 用过MySQL等 了解Linux最基本的操作 git常用操作 关于ssh 本文参考:linux上安装gogs搭建个人仓库 下载 https://github.com/gogs/gogs/r ...
- Elasticsearch由浅入深(五)_version乐观锁、external version乐观锁、partial update、groovy脚本实现partial update
基于_version进行乐观锁并发控制 先构造一条数据出来 PUT /test_index/test_type/ { "test_field": "test test&q ...
- candlestick用法
import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter, WeekdayLocator, DayLoc ...