1.LeNet模型

LeNet是一个早期用来识别手写数字的卷积神经网络,这个名字来源于LeNet论文的第一作者Yann LeCun。LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的成果,这个尊基性的工作第一次将卷积神经网络推上舞台

上图就是LeNet模型,下面将对每层参数进行说明

1.1 input输入层

假设输入层数据shape=(32,32)

1.2 C1卷积层

  • 卷积核大小: kernel_size=(5,5)
  • 步幅:stride = 1
  • 输出通道为6
  • 可训练参数为: (5 * 5 + 1) * 6
  • 激活函数:采用relu

    输入层数据经过C1卷积层后将得到feature maps形状(6 * 28 * 28),注:28 = 32 -5 + 1

1.3 S2池化层

池化层(Max Pooling)窗口形状均为2*2,步幅度为2,输出feature maps为(6 *14 * 14),6为feature map的数量

1.4 C3卷积层

  • 卷积核大小: kernel_size=(5,5)
  • 步幅:stride = 1
  • 输出通道为16
  • 激活函数:采用relu得到feature maps为(16 * 10 * 10),(10*10)为每个feature map形状,16为feature map数量

1.5 S4池化层

池化层(Max Pooling)窗口形状依然均为2*2,步幅度为2,输出feature maps为(16 *5 * 5),16为feature map的数量

1.6 C5全链接层

  • 输出120个神经元
  • 激活函数:relu

1.7 F6全连接层

  • 输出84个神经元
  • 激活函数:relu

1.8 output

  • 输出10个神经元
  • 激活函数:无

2.用Mxnet实现LeNet模型

import mxnet as mx
from mxnet import autograd,init,nd
from mxnet.gluon import nn,Trainer
from mxnet.gluon import data as gdata
from mxnet.gluon import loss as gloss
import time class LeNet_mxnet:
def __init__(self):
self.net = nn.Sequential()
self.net.add(nn.Conv2D(channels=6,kernel_size=5,activation='relu'),
nn.MaxPool2D(pool_size =(2,2),strides=(2,2)),
nn.Conv2D(channels=16,kernel_size=(5,5),strides=(1,1),padding=(0,0),activation='relu'),
nn.MaxPool2D(pool_size =(2,2),strides=(2,2)),
nn.Dense(units=120,activation='relu'),
nn.Dense(units=84,activation='relu'),
nn.Dense(units=10) #最后一个全连接层激活函数取决于损失函数
) def train(self,train_iter,test_iter,n_epochs,ctx):
print('training on',ctx)
self.net.initialize(force_reinit=True,ctx=ctx,init=init.Xavier())
trainer_op = Trainer(self.net.collect_params(),'adam',{'learning_rate':0.01})
loss = gloss.SoftmaxCrossEntropyLoss() accuracy_val = 0
for epoch in range(n_epochs): train_loss_sum,train_acc_sum,n,start = 0.0,0.0,0,time.time() for x_batch,y_batch in train_iter:
x_batch,y_batch = x_batch.as_in_context(ctx),y_batch.as_in_context(ctx)
with autograd.record():
y_hat = self.net(x_batch)
loss_val = loss(y_hat,y_batch).sum()
loss_val.backward()
trainer_op.step(n_batches)
y_batch = y_batch.astype('float32')
train_loss_sum += loss_val.asscalar()
train_acc_sum += (y_hat.argmax(axis=1) == y_batch).sum().asscalar()
n += y_batch.size
test_acc = self.accuracy_score(test_iter,ctx)
accuracy_val += self.accuracy_score(test_iter,ctx)
print('epoch:%d,train_loss:%.4f,train_acc:%.3f,test_acc:%.3f,time:%.1f sec'
%(epoch+1, train_loss_sum / n, train_acc_sum/ n,test_acc,time.time() - start)) def accuracy_score(self,data_iter,ctx):
acc_sum,n = nd.array([0],ctx=ctx),0
for x,y in data_iter:
x,y = x.as_in_context(ctx),y.as_in_context(ctx)
y = y.astype('float32')
acc_sum += (self.net(x).argmax(axis=1) == y).sum()
n += y.size
return acc_sum.asscalar() / n def __call__(self,x):
return self.net(x) def predict(self,x,ctx):
x = x.as_in_context(ctx)
return self.net(x).argmax(axis=1) def print_info(self):
print(self.net[4].params)

3.使用mnist手写数字数据集进行测试

from tensorflow.keras.datasets import mnist

(x_train,y_train),(x_test,y_test) = mnist.load_data()
print(x_train.shape,y_train.shape)
print(x_test.shape,y_test.shape)
x_train = x_train.reshape(60000,1,28,28).astype('float32')
x_test = x_test.reshape(10000,1,28,28).astype('float32')
(60000, 28, 28) (60000,)
(10000, 28, 28) (10000,)
lenet_mxnet = LeNet_mxnet()
epochs = 10
n_batches = 500
train_iter = gdata.DataLoader(gdata.ArrayDataset(x_train,y_train),batch_size=n_batches)
test_iter = gdata.DataLoader(gdata.ArrayDataset(x_test,y_test),batch_size=n_batches)
lenet_mxnet.train(train_iter,test_iter,epochs,ctx=mx.gpu())
training on gpu(0)
epoch:1,train_loss:1.8267,train_acc:0.571,test_acc:0.896,time:3.0 sec
epoch:2,train_loss:0.2449,train_acc:0.924,test_acc:0.948,time:2.6 sec
epoch:3,train_loss:0.1563,train_acc:0.952,test_acc:0.954,time:2.6 sec
epoch:4,train_loss:0.1302,train_acc:0.961,test_acc:0.962,time:2.5 sec
epoch:5,train_loss:0.1169,train_acc:0.964,test_acc:0.958,time:2.5 sec
epoch:6,train_loss:0.1017,train_acc:0.969,test_acc:0.967,time:2.5 sec
epoch:7,train_loss:0.0855,train_acc:0.973,test_acc:0.964,time:3.3 sec
epoch:8,train_loss:0.0848,train_acc:0.973,test_acc:0.964,time:3.6 sec
epoch:9,train_loss:0.0767,train_acc:0.976,test_acc:0.963,time:3.5 sec
epoch:10,train_loss:0.0771,train_acc:0.977,test_acc:0.970,time:3.5 sec
# 将预测结果可视化
import matplotlib.pyplot as plt def plt_image(image):
n = 20
plt.figure(figsize=(20,4))
for i in range(n):
ax = plt.subplot(2,10,i+1)
plt.imshow(x_test[i].reshape(28,28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show() plt_image(x_test)
print('predict result:',lenet_mxnet.predict(nd.array(x_test[0:20]),ctx=mx.gpu()))

predict result:
[7. 2. 1. 0. 4. 1. 4. 9. 5. 9. 0. 6. 9. 0. 1. 5. 9. 7. 3. 4.]
<NDArray 20 @gpu(0)>

4. 附:需要注意的知识点

  • (1) 注意SoftmaxCrossEntropyLoss的使用,hybrid_forward源码说明,若from_logits为False时(默认为Flase),会先通过log_softmax计算各分类的概率,再计算loss,同样SigmoidBinaryCrossEntropyLoss也提供了from_sigmoid参数决定是否在hybrid_forward函数中要计算sigmoid函数,所以在创建模型最后一层的时候要特别注意是否要给激活函数

  • (2) 注意权重初始化选择

  • (3) 注意(y_hat.argmax(axis=1) == y_batch)操作时y_batch数据类型转换

  • (4) 上面的模型没有对数据集进行归一化处理,可以添加该步骤

使用mxnet实现卷积神经网络LeNet的更多相关文章

  1. MXNET:卷积神经网络

    介绍过去几年中数个在 ImageNet 竞赛(一个著名的计算机视觉竞赛)取得优异成绩的深度卷积神经网络. LeNet LeNet 证明了通过梯度下降训练卷积神经网络可以达到手写数字识别的最先进的结果. ...

  2. TensorFlow+实战Google深度学习框架学习笔记(12)------Mnist识别和卷积神经网络LeNet

    一.卷积神经网络的简述 卷积神经网络将一个图像变窄变长.原本[长和宽较大,高较小]变成[长和宽较小,高增加] 卷积过程需要用到卷积核[二维的滑动窗口][过滤器],每个卷积核由n*m(长*宽)个小格组成 ...

  3. MXNET:卷积神经网络基础

    卷积神经网络(convolutional neural network).它是近年来深度学习能在计算机视觉中取得巨大成果的基石,它也逐渐在被其他诸如自然语言处理.推荐系统和语音识别等领域广泛使用. 目 ...

  4. 卷积神经网络LeNet Convolutional Neural Networks (LeNet)

    Note This section assumes the reader has already read through Classifying MNIST digits using Logisti ...

  5. 卷积神经网络之LeNet

    开局一张图,内容全靠编. 上图引用自 [卷积神经网络-进化史]从LeNet到AlexNet. 目前常用的卷积神经网络 深度学习现在是百花齐放,各种网络结构层出不穷,计划梳理下各个常用的卷积神经网络结构 ...

  6. 卷积神经网络详细讲解 及 Tensorflow实现

    [附上个人git完整代码地址:https://github.com/Liuyubao/Tensorflow-CNN] [如有疑问,更进一步交流请留言或联系微信:523331232] Reference ...

  7. 经典卷积神经网络(LeNet、AlexNet、VGG、GoogleNet、ResNet)的实现(MXNet版本)

    卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷 ...

  8. 卷积神经网络的一些经典网络(Lenet,AlexNet,VGG16,ResNet)

    LeNet – 5网络 网络结构为: 输入图像是:32x32x1的灰度图像 卷积核:5x5,stride=1 得到Conv1:28x28x6 池化层:2x2,stride=2 (池化之后再经过激活函数 ...

  9. 从LeNet到SENet——卷积神经网络回顾

    从LeNet到SENet——卷积神经网络回顾 从 1998 年经典的 LeNet,到 2012 年历史性的 AlexNet,之后深度学习进入了蓬勃发展阶段,百花齐放,大放异彩,出现了各式各样的不同网络 ...

随机推荐

  1. Mocha测试框架,保证代码质量

    mocha mocha是JavaScript的一种单元测试框架,既可以在浏览器环境下运行,也可以在Node.js环境下运行. 使用mocha,我们就只需要专注于编写单元测试本身,然后,让mocha去自 ...

  2. 【leetcode】字母异位词分组

    给定一个字符串数组,将字母异位词组合在一起.字母异位词指字母相同,但排列不同的字符串. 示例: 输入: ["eat", "tea", "tan&quo ...

  3. 使用VMware 15 安装虚拟机和使用CentOS 8

    前言: 最近在学习Linux和.Net Core,学习一些跨平台的知识.首先我用的虚拟机软件是VMware-15.1.0,Linux系统是CentOS-8-x86_64-1905-dvd1. 一.安装 ...

  4. vs 发版时,在发版的文件夹中,找不到应该有的某个文件

    检查:VS中,这个文件右击属性,查看生成操作.如果是“无”,改为“内容”.再重新发布就没问题了. 想看发版出来的内容包括哪些,可以从“发布”--“应用程序文件”查看

  5. 02 .NET CORE 2.2 使用OCELOT -- 路由

    继续学习.NET CORE 2.2 使用OCELOT https://www.jianshu.com/p/05ccf87a3091 https://www.jianshu.com/p/585396dc ...

  6. angularJS 在edge浏览器上传文件,无法主动触发ng-click

    今天发现的问题 在谷歌浏览器一直运行良好的功能,在edge浏览器不能使用. 代码参考我的另一篇博客:WebAPI Angularjs 上传文件 不能运行的原因 下图红框中的代码在edge浏览器中无法执 ...

  7. 【C#】Winform 令人困擾的畫面閃爍問題解法

    DoubleBuffered = true 如果 Control 沒有這個屬性,可以使用我下列擴充函式進行設定︰ public static void SetDoubleBuffered<T&g ...

  8. 【开发工具】- Idea常用快捷键

    快捷键 Ctrl + shift + F 全局搜索 Ctrl + F 搜索 Ctrl + Z 后退 Ctrl + shift + Z 前进 Ctrl + Shift+E 最近更改的文件 Ctrl + ...

  9. 对于js中事件冒泡的理解分析

    一. 事件 事件的三个阶段:事件捕获 -> 事件目标 -> 事件冒泡 捕获阶段:先由文档的根节点document往事件触发对象,从外向内捕获事件对象: 目标阶段:到达目标事件位置(事发地) ...

  10. 转:Oracle中SQL语句执行过程中

    Oracle中SQL语句执行过程中,Oracle内部解析原理如下: 1.当一用户第一次提交一个SQL表达式时,Oracle会将这SQL进行Hard parse,这过程有点像程序编译,检查语法.表名.字 ...