【洛谷 P4688】 [Ynoi2016]掉进兔子洞(bitset,莫队)
题目链接
第一道Ynoi
显然每次询问的答案为三个区间的长度和减去公共数字个数*3.
如果是公共数字种数的话就能用莫队+bitset存每个区间的状态,然后3个区间按位与就行了。
但现在是个数,bitset中除了保存每个数是否出现外,还要保存出现的次数。
这时我们发现每个数字的出现次数之和\(=n\)
于是想到离散化以后每个数字占bitset中的一格。
还记得\(SA\)里的基数排序吗?这样就能使第\(n\)次加入区间的同一个数字有固定的位置安放。
于是就能莫队了。
但是一看数据范围,好像开不下\(1e5\)个长度为\(1e5\)的bitset啊。
没关系,把答案分成3组,一组一组来就行了。
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <bitset>
#include <cmath>
#include <iostream>
using namespace std;
const int MAXN = 100010;
const int MAXM = 34010;
bitset <MAXN> ans[MAXM], now;
int n, m, a[MAXN];
inline int read(){
int s = 0;
char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s;
}
int Q;
struct lsh{
int val, id;
int operator < (const lsh A) const{
return val < A.val;
}
}p[MAXN];
struct ask{
int l, r, id;
int operator < (const ask A) const{
return l / Q == A.l / Q ? r < A.r : l < A.l;
}
}q[MAXM * 3];
int val[MAXN], cnt, sum[MAXN], v[MAXN], all, Ans[MAXM];
void work(){
sort(q + 1, q + all + 1);
now.reset();
memset(v, 0, sizeof v);
int l = 1, r = 1; now.set(val[1]); v[val[1]] = 1;
for(int i = 1; i <= all; ++i){
while(r < q[i].r){ ++r; now.set(val[r] - v[val[r]]); ++v[val[r]]; }
while(l > q[i].l){ --l; now.set(val[l] - v[val[l]]); ++v[val[l]]; }
while(r > q[i].r){ --v[val[r]]; now.set(val[r] - v[val[r]], 0); --r; }
while(l < q[i].l){ --v[val[l]]; now.set(val[l] - v[val[l]], 0); ++l; }
ans[q[i].id] &= now;
}
}
int main(){
n = read(); m = read(); Q = sqrt(n);
for(int i = 1; i <= n; ++i)
p[i].val = read(), p[i].id = i;
for(int i = 1; i <= 33337; ++i)
ans[i].set();
sort(p + 1, p + n + 1);
for(int i = 1; i <= n; ++i)
if(p[i].val != p[i - 1].val)
val[p[i].id] = ++cnt;
else val[p[i].id] = cnt;
for(int i = 1; i <= n; ++i)
++sum[val[i]];
for(int i = 1; i <= cnt; ++i)
sum[i] += sum[i - 1];
for(int i = 1; i <= n; ++i)
val[i] = sum[val[i]];
int o = m / 3;
if(o){
for(int qqc = 1; qqc <= 2; ++qqc){
cnt = 0;
for(int i = 1; i <= o; ++i){
q[++cnt].id = i; q[cnt].l = read(); q[cnt].r = read(); Ans[i] += q[cnt].r - q[cnt].l + 1;
q[++cnt].id = i; q[cnt].l = read(); q[cnt].r = read(); Ans[i] += q[cnt].r - q[cnt].l + 1;
q[++cnt].id = i; q[cnt].l = read(); q[cnt].r = read(); Ans[i] += q[cnt].r - q[cnt].l + 1;
}
all = o * 3; work();
for(int i = 1; i <= o; ++i){
printf("%d\n", Ans[i] - int(ans[i].count()) * 3);
Ans[i] = 0; ans[i].set();
}
}
}
m -= o * 2; cnt = 0;
for(int i = 1; i <= m; ++i){
q[++cnt].id = i; q[cnt].l = read(); q[cnt].r = read(); Ans[i] += q[cnt].r - q[cnt].l + 1;
q[++cnt].id = i; q[cnt].l = read(); q[cnt].r = read(); Ans[i] += q[cnt].r - q[cnt].l + 1;
q[++cnt].id = i; q[cnt].l = read(); q[cnt].r = read(); Ans[i] += q[cnt].r - q[cnt].l + 1;
}
all = m * 3; work();
for(int i = 1; i <= m; ++i)
printf("%d\n", Ans[i] - int(ans[i].count()) * 3);
return 0;
}
【洛谷 P4688】 [Ynoi2016]掉进兔子洞(bitset,莫队)的更多相关文章
- luogu P4688 [Ynoi2016]掉进兔子洞 bitset 莫队
题目链接 luogu P4688 [Ynoi2016]掉进兔子洞 题解 莫队维护bitset区间交个数 代码 // luogu-judger-enable-o2 #include<cmath&g ...
- [洛谷P4688][Ynoi2016]掉进兔子洞
题目大意:给定一个$n(n\leqslant10^5)$序列,$m(m\leqslant10^5)$个询问,每个询问给出$l_1,r_1,l_2,r_2,l_3,r_3$.令$s$为该三个区间的交集的 ...
- 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解
题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...
- Luogu4688 [Ynoi2016]掉进兔子洞 【莫队,bitset】
题目链接:洛谷 我们知道要求的是\([l_1,r_1],[l_2,r_2],[l_3,r_3]\)的可重集取交的大小,肯定是要用bitset的,那怎么做可重集呢? 那就是要稍微动点手脚,首先在离散化的 ...
- bzoj千题计划320:bzoj4939: [Ynoi2016]掉进兔子洞(莫队 + bitset)
https://www.lydsy.com/JudgeOnline/problem.php?id=4939 ans= r1-l1+1 + r2-l2+1 +r3-l3+1 - ∑ min(cnt1[i ...
- BZOJ4939 Ynoi2016掉进兔子洞(莫队+bitset)
容易发现要求三个区间各数出现次数的最小值.考虑bitset,不去重离散化后and一发就可以了.于是莫队求出每个区间的bitset.注意空间开不下,做多次即可.输出的东西错了都能调一年服了我了. #in ...
- BZOJ 4939 [Ynoi2016]掉进兔子洞(莫队+bitset)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4939 [题目大意] 给出一个数列,每个询问给出三个区间,问除去三个区间共有的数字外, ...
- YNOI2016:掉进兔子洞 (莫队+bitset)
YNOI2016:掉进兔子洞 题意简述: 有 m 个询问,每次询问三个区间,把三个区间中同时出现的数一个一个删掉,问最后三个区间剩下的数的个数和,询问独立. 注意这里删掉指的是一个一个删,不是把等于这 ...
- p4688 [Ynoi2016]掉进兔子洞
传送门 分析 我们考虑先将所有数离散化 之后我们对于每个状态用一个bitset来记录 其中第i段表示颜色i的信息 对于每一段信息均是段首若干1,剩余若干0表示这种颜色有多少个 于是我们不难想到莫队 答 ...
- luogu P4688 [Ynoi2016]掉进兔子洞
luogu 我们要求的答案应该是三个区间长度\(-3*\)在三个区间中都出现过的数个数 先考虑数列中没有相同的数怎么做,那就是对三个区间求交,然后交集大小就是要求的那个个数.现在有相同的数,考虑给区间 ...
随机推荐
- session与cookie之间的关系
一.客户端与服务端请求响应的关系 USER(客户端) 请求 tomcat(服务器), 属于HTTP请求.http请求是无状态的,即每次服务端接收到客户端的请求时,都是一个全新的请求,服务器并不知道客户 ...
- 退出状态、测试(test or [])、操作符、[]与[[]]区别
一.退出状态 系统每执行一个命令,都会返回一个退出状态,若返回退出状态为0,表示命令执行成功, 若返回退出状态不为0,表示命令执行有错误. echo $? 可以打印出退出状态. 例如:ls echo ...
- Android近场通信---NFC基础转)
Android近场通信---NFC基础(一)(转) 本文介绍在Android系通过你所能执行的基本任务。它解释了如何用NDEF消息格式来发送和接收NFC数据,并且介绍了支持这些功能的Android框架 ...
- Activiti task claim
Activiti task claim claim,认领,领取 claim - 国内版 Bing https://cn.bing.com/search?FORM=U227DF&PC=U227& ...
- [E2E_L9]类化和级联化
一.多车辆识别可能和车辆车牌分割: 这样一张图,可以识别多车辆和车牌,问题是如何区分并且配对. 0 1 7 8 是否是车牌可以通过图片的大小进行判断.而配对是前后顺序的. // ------- ...
- redis-查看日志
转: redis-查看日志 redis在默认情况下,是不会生成日志文件的,所以需要配置 配置方法: 1.首先找到redis的配置文件 2.打开配置文件,找到logfile(可能有多个logfile,认 ...
- redis连接池——JedisPool和JedisCluster的介绍与使用
目录 Jedis使用方式的介绍 Redis连接池介绍 创建连接池配置文件 单机版的Redis连接池 集群版的Redis连接池 总结 Jedis使用方式的介绍 Jedis就是Java实现的操作Redis ...
- JavaScript之 BOM 与 DOM
1. JavaScript 组成 2. DOM.DOCUMENT.BOM.WINDOW 区别 DOM 是为了操作文档出现的 API , document 是其的一个对象:BOM 是为了操作浏览器出现的 ...
- Django文档阅读之模型
模型 模型是您的数据唯一而且准确的信息来源.它包含您正在储存的数据的重要字段和行为.一般来说,每一个模型都映射一个数据库表. 基础: 每个模型都是一个 Python 的类,这些类继承 django.d ...
- TCP报文格式+UDP报文格式+MAC帧格式
TCP和UDP的区别: 1)TCP是面向连接的,而UDP是无连接的 2)TCP提供可靠服务,而UDP不提供可靠服务,只是尽最大努力交付报文 3)TCP面向字节流,TCP把数据看成一串无结构的字节流,而 ...