洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's

洛谷传送门

JDOJ 2424: USACO 2014 Open Silver 2.Dueling GPSs

JDOJ传送门

Description

Problem 2: Dueling GPS's [Brian Dean, 2014]

Farmer John has recently purchased a new car online, but in his haste he

accidentally clicked the "Submit" button twice when selecting extra

features for the car, and as a result the car ended up equipped with two

GPS navigation systems! Even worse, the two systems often make conflicting

decisions about the route that FJ should take.

The map of the region in which FJ lives consists of N intersections

(2 <= N <= 10,000) and M directional roads (1 <= M <= 50,000). Road i

connects intersections A_i (1 <= A_i <= N) and B_i (1 <= B_i <= N).

Multiple roads could connect the same pair of intersections, and a

bi-directional road (one permitting two-way travel) is represented by two

separate directional roads in opposite orientations. FJ's house is located

at intersection 1, and his farm is located at intersection N. It is

possible to reach the farm from his house by traveling along a series of

directional roads.

Both GPS units are using the same underlying map as described above;

however, they have different notions for the travel time along each road.

Road i takes P_i units of time to traverse according to the first GPS unit,

and Q_i units of time to traverse according to the second unit (each

travel time is an integer in the range 1..100,000).

FJ wants to travel from his house to the farm. However, each GPS unit

complains loudly any time FJ follows a road (say, from intersection X to

intersection Y) that the GPS unit believes not to be part of a shortest

route from X to the farm (it is even possible that both GPS units can

complain, if FJ takes a road that neither unit likes).

Please help FJ determine the minimum possible number of total complaints he

can receive if he chooses his route appropriately. If both GPS units

complain when FJ follows a road, this counts as +2 towards the total.

Input

* Line 1: The integers N and M.

Line i describes road i with four integers: A_i B_i P_i Q_i.

Output

* Line 1: The minimum total number of complaints FJ can receive if he

routes himself from his house to the farm optimally.

Sample Input

5 7 3 4 7 1 1 3 2 20 1 4 17 18 4 5 25 3 1 2 10 1 3 5 4 14 2 4 6 5

Sample Output

1

HINT

INPUT DETAILS:

There are 5 intersections and 7 directional roads. The first road connects

from intersection 3 to intersection 4; the first GPS thinks this road takes

7 units of time to traverse, and the second GPS thinks it takes 1 unit of

time, etc.

OUTPUT DETAILS:

If FJ follows the path 1 -> 2 -> 4 -> 5, then the first GPS complains on

the 1 -> 2 road (it would prefer the 1 -> 3 road instead). However, for

the rest of the route 2 -> 4 -> 5, both GPSs are happy, since this is a

shortest route from 2 to 5 according to each GPS.

题目大意:

给你一个N个点的有向图,可能有重边.

有两个GPS定位系统,分别认为经过边i的时间为Pi,和Qi.

每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次T T

两个系统是分开警告的,就是说当走的这条边都不在两个系统认为的最短路范围内,就会受到2次警告.

如果边(u,v)不在u到n的最短路径上,这条边就受到一次警告,求从1到n最少受到多少次警告。

题解:

3遍SPFA 打到我吐血。

我不想讲了。

#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
#define inf 0x3f3f3f
using namespace std;
struct edge{
int w,to,next;
}e1[201100];
edge e2[201100];
edge e3[201100];
int head1[101100],head2[101100],head3[101100];
int d1[101100],d2[101100],d3[101100];
int f1[101100],f2[101100];
int n,en1,en2,en3,m;
void add1(int v,int u,int w){
en1++;
e1[en1].to=v;
e1[en1].w=w;
e1[en1].next=head1[u];
head1[u]=en1;
}
void add2(int v,int u,int w){
en2++;
e2[en2].to=v;
e2[en2].w=w;
e2[en2].next=head2[u];
head2[u]=en2;
}
void add3(int u,int v,int w){
en3++;
e3[en3].to=v;
e3[en3].w=w;
e3[en3].next=head3[u];
head3[u]=en3;
}
void sp1(int s){
queue<int> q;
int inq[20010];
memset(inq,0,sizeof(inq));
for(int i=1;i<=n;i++)d1[i]=inf;
q.push(s);inq[s]=1;d1[s]=0;
while(!q.empty()){
int u=q.front();q.pop();inq[u]=0;
for(int i=head1[u];i;i=e1[i].next){
int v=e1[i].to,w=e1[i].w;
if(d1[v]>d1[u]+w)
{
d1[v]=d1[u]+w;
f1[v]=i;
if(!inq[v]){
inq[v]=1;
q.push(v);
}
}
}
}
}
void sp2(int s){
queue<int> q;
int inq[20010];
memset(inq,0,sizeof(inq));
for(int i=1;i<=n;i++)d2[i]=inf;
q.push(s);inq[s]=1;d2[s]=0;
while(!q.empty()){
int u=q.front();q.pop();inq[u]=0;
for(int i=head2[u];i;i=e2[i].next){
int v=e2[i].to,w=e2[i].w;
if(d2[v]>d2[u]+w)
{
d2[v]=d2[u]+w;
f2[v]=i;
if(!inq[v]){
inq[v]=1;
q.push(v);
}
}
}
}
}
void sp3(int s){
queue<int> q;
int inq[20010];
memset(inq,0,sizeof(inq));
for(int i=1;i<=n;i++)d3[i]=inf;
q.push(s);inq[s]=1;d3[s]=0;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head3[u];i;i=e3[i].next){
int v=e3[i].to,w=e3[i].w;
if(i==f1[u])w--;
if(i==f2[u])w--;
if(d3[v]>d3[u]+w)
{
d3[v]=d3[u]+w;
if(!inq[v]){
inq[v]=1;
q.push(v);
}
}
}inq[u]=0;
}
}
int main(){
cin>>n>>m;
for(int i=1;i<=m;i++){
int a,b,c,d;
cin>>a>>b>>c>>d;
add1(a,b,c);
add2(a,b,d);
add3(a,b,2);
}
sp1(n);
sp2(n);
sp3(1);
cout<<d3[n];
}

USACO Dueling GPS's的更多相关文章

  1. BZOJ3538: [Usaco2014 Open]Dueling GPS

    3538: [Usaco2014 Open]Dueling GPS Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 59  Solved: 36[Subm ...

  2. BZOJ 3538 == 洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's

    P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题目描述 Farmer John has recently purchased a new car online, but ...

  3. Luogu P3106 [USACO14OPEN]GPS的决斗Dueling GPS's(最短路)

    P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题意 题目描述 Farmer John has recently purchased a new car online, ...

  4. USACO 2014 US Open Dueling GPS's /// SPFA

    题目大意: 给定n个点m条边的有向图 有两个GPS 分别认为 A[i]到B[i] 的一条边的花费是P[i].Q[i] 当当前走的边不是GPS认为的最短路上的边就会被警告 即两个GPS都不认为是最短路上 ...

  5. [USACO14OPEN] Dueling GPS's[最短路建模]

    题目描述 Farmer John has recently purchased a new car online, but in his haste he accidentally clicked t ...

  6. 【BZOJ】3538: [Usaco2014 Open]Dueling GPS(spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3538 题意不要理解错QAQ,是说当前边(u,v)且u到n的最短距离中包含这条边,那么这条边就不警告. ...

  7. 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide

    [题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...

  8. [USACO14OPEN]GPS的决斗Dueling GPS's

    题目概况 题目描述 给你一个\(N\)个点的有向图,可能有重边. 有两个\(GPS\)定位系统,分别认为经过边\(i\)的时间为\(P_i\),和\(Q_i\). 每走一条边的时候,如果一个系统认为走 ...

  9. 2018.07.22 洛谷P3106 GPS的决斗Dueling GPS's(最短路)

    传送门 图论模拟题. 这题直接写3个(可以压成一个)spfa" role="presentation" style="position: relative;&q ...

随机推荐

  1. Java调试平台体系JPDA

    Java 平台调试体系(Java Platform Debugger Architecture,JPDA)定义了一个完整独立的体系,它由三个相对独立的层次共同组成,而且规定了它们三者之间的交互方式,或 ...

  2. OI回忆录——梦开始的地方

    前言 谨以此文,纪念和整理我在OI之路上的奔波历程. 或许,等到或早或晚都要来临的退役真正来临时,再写回忆录,就晚了,那么,趁现在,自信还在,青春犹存,整理一下我慢慢的OI路吧. 我真正开始接触OI是 ...

  3. 记录下github 与 gitee 同时使用

    参考 Gitee(码云).Github同时配置ssh key 中间有一步,创建config文件,然后测试就过不去了. 报错:Bad owner or permissions on C:\\Users\ ...

  4. PHP自动加载-spl_autoload_register

    spl_autoload_register 自动加载spl : Standard PHP library (标准PHP库) 首先来了解 __autoload print.class.php <? ...

  5. Visual Studio Code 小记

    1. 改变语言 如图: 2. 设置皮肤 如图: 3. Visual Studio Code关闭右侧预览功能 4. 关闭预览模式 5. VS Code 优秀的主题 a. Atom One Dark Th ...

  6. Enum.GetValues(),返回System.Array的一个实例

    Array enumData = Enum.GetValues(e.GetType()); Console.WriteLine("This enum has {0} members.&quo ...

  7. C#使用HttpClient上传文件并附带其他参数

    HttpClient和MultipartFormDataContent(传送门)最低适用于.NET Framework 4.5版本 发送端代码 using (HttpClient client = n ...

  8. tkinter中的message

    from tkinter import * root =Tk() root.title("message练习") myText = "2019年12月13日,下午一个人, ...

  9. Vue笔记--同局域网下访问本地项目

    正常开发中有时间提测比较麻烦.通常让测试小姐姐连接开发本地开启的服务器访问本地项目(在同一局域网下). 其实一般项目IDE已经实现这些功能例如webstorm和vscode,有时候需要单独配置下. 但 ...

  10. vue如何导入外部js文件(es6)

    也许大家都是使用习惯了es5的写法喜欢直接用<Script>标签倒入js文件,但是很是可惜,这写法.在es6,或则说vue环境下不支持 真的写法是怎样? 首先.我们要改造我们要映入的外部j ...