USACO Dueling GPS's
洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's
JDOJ 2424: USACO 2014 Open Silver 2.Dueling GPSs
Description
Problem 2: Dueling GPS's [Brian Dean, 2014]
Farmer John has recently purchased a new car online, but in his haste he
accidentally clicked the "Submit" button twice when selecting extra
features for the car, and as a result the car ended up equipped with two
GPS navigation systems! Even worse, the two systems often make conflicting
decisions about the route that FJ should take.
The map of the region in which FJ lives consists of N intersections
(2 <= N <= 10,000) and M directional roads (1 <= M <= 50,000). Road i
connects intersections A_i (1 <= A_i <= N) and B_i (1 <= B_i <= N).
Multiple roads could connect the same pair of intersections, and a
bi-directional road (one permitting two-way travel) is represented by two
separate directional roads in opposite orientations. FJ's house is located
at intersection 1, and his farm is located at intersection N. It is
possible to reach the farm from his house by traveling along a series of
directional roads.
Both GPS units are using the same underlying map as described above;
however, they have different notions for the travel time along each road.
Road i takes P_i units of time to traverse according to the first GPS unit,
and Q_i units of time to traverse according to the second unit (each
travel time is an integer in the range 1..100,000).
FJ wants to travel from his house to the farm. However, each GPS unit
complains loudly any time FJ follows a road (say, from intersection X to
intersection Y) that the GPS unit believes not to be part of a shortest
route from X to the farm (it is even possible that both GPS units can
complain, if FJ takes a road that neither unit likes).
Please help FJ determine the minimum possible number of total complaints he
can receive if he chooses his route appropriately. If both GPS units
complain when FJ follows a road, this counts as +2 towards the total.
Input
* Line 1: The integers N and M.
Line i describes road i with four integers: A_i B_i P_i Q_i.
Output
* Line 1: The minimum total number of complaints FJ can receive if he
routes himself from his house to the farm optimally.
Sample Input
5 7 3 4 7 1 1 3 2 20 1 4 17 18 4 5 25 3 1 2 10 1 3 5 4 14 2 4 6 5
Sample Output
1
HINT
INPUT DETAILS:
There are 5 intersections and 7 directional roads. The first road connects
from intersection 3 to intersection 4; the first GPS thinks this road takes
7 units of time to traverse, and the second GPS thinks it takes 1 unit of
time, etc.
OUTPUT DETAILS:
If FJ follows the path 1 -> 2 -> 4 -> 5, then the first GPS complains on
the 1 -> 2 road (it would prefer the 1 -> 3 road instead). However, for
the rest of the route 2 -> 4 -> 5, both GPSs are happy, since this is a
shortest route from 2 to 5 according to each GPS.
题目大意:
给你一个N个点的有向图,可能有重边.
有两个GPS定位系统,分别认为经过边i的时间为Pi,和Qi.
每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次T T
两个系统是分开警告的,就是说当走的这条边都不在两个系统认为的最短路范围内,就会受到2次警告.
如果边(u,v)不在u到n的最短路径上,这条边就受到一次警告,求从1到n最少受到多少次警告。
题解:
3遍SPFA 打到我吐血。
我不想讲了。
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
#define inf 0x3f3f3f
using namespace std;
struct edge{
int w,to,next;
}e1[201100];
edge e2[201100];
edge e3[201100];
int head1[101100],head2[101100],head3[101100];
int d1[101100],d2[101100],d3[101100];
int f1[101100],f2[101100];
int n,en1,en2,en3,m;
void add1(int v,int u,int w){
en1++;
e1[en1].to=v;
e1[en1].w=w;
e1[en1].next=head1[u];
head1[u]=en1;
}
void add2(int v,int u,int w){
en2++;
e2[en2].to=v;
e2[en2].w=w;
e2[en2].next=head2[u];
head2[u]=en2;
}
void add3(int u,int v,int w){
en3++;
e3[en3].to=v;
e3[en3].w=w;
e3[en3].next=head3[u];
head3[u]=en3;
}
void sp1(int s){
queue<int> q;
int inq[20010];
memset(inq,0,sizeof(inq));
for(int i=1;i<=n;i++)d1[i]=inf;
q.push(s);inq[s]=1;d1[s]=0;
while(!q.empty()){
int u=q.front();q.pop();inq[u]=0;
for(int i=head1[u];i;i=e1[i].next){
int v=e1[i].to,w=e1[i].w;
if(d1[v]>d1[u]+w)
{
d1[v]=d1[u]+w;
f1[v]=i;
if(!inq[v]){
inq[v]=1;
q.push(v);
}
}
}
}
}
void sp2(int s){
queue<int> q;
int inq[20010];
memset(inq,0,sizeof(inq));
for(int i=1;i<=n;i++)d2[i]=inf;
q.push(s);inq[s]=1;d2[s]=0;
while(!q.empty()){
int u=q.front();q.pop();inq[u]=0;
for(int i=head2[u];i;i=e2[i].next){
int v=e2[i].to,w=e2[i].w;
if(d2[v]>d2[u]+w)
{
d2[v]=d2[u]+w;
f2[v]=i;
if(!inq[v]){
inq[v]=1;
q.push(v);
}
}
}
}
}
void sp3(int s){
queue<int> q;
int inq[20010];
memset(inq,0,sizeof(inq));
for(int i=1;i<=n;i++)d3[i]=inf;
q.push(s);inq[s]=1;d3[s]=0;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head3[u];i;i=e3[i].next){
int v=e3[i].to,w=e3[i].w;
if(i==f1[u])w--;
if(i==f2[u])w--;
if(d3[v]>d3[u]+w)
{
d3[v]=d3[u]+w;
if(!inq[v]){
inq[v]=1;
q.push(v);
}
}
}inq[u]=0;
}
}
int main(){
cin>>n>>m;
for(int i=1;i<=m;i++){
int a,b,c,d;
cin>>a>>b>>c>>d;
add1(a,b,c);
add2(a,b,d);
add3(a,b,2);
}
sp1(n);
sp2(n);
sp3(1);
cout<<d3[n];
}
USACO Dueling GPS's的更多相关文章
- BZOJ3538: [Usaco2014 Open]Dueling GPS
3538: [Usaco2014 Open]Dueling GPS Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 59 Solved: 36[Subm ...
- BZOJ 3538 == 洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's
P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题目描述 Farmer John has recently purchased a new car online, but ...
- Luogu P3106 [USACO14OPEN]GPS的决斗Dueling GPS's(最短路)
P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题意 题目描述 Farmer John has recently purchased a new car online, ...
- USACO 2014 US Open Dueling GPS's /// SPFA
题目大意: 给定n个点m条边的有向图 有两个GPS 分别认为 A[i]到B[i] 的一条边的花费是P[i].Q[i] 当当前走的边不是GPS认为的最短路上的边就会被警告 即两个GPS都不认为是最短路上 ...
- [USACO14OPEN] Dueling GPS's[最短路建模]
题目描述 Farmer John has recently purchased a new car online, but in his haste he accidentally clicked t ...
- 【BZOJ】3538: [Usaco2014 Open]Dueling GPS(spfa)
http://www.lydsy.com/JudgeOnline/problem.php?id=3538 题意不要理解错QAQ,是说当前边(u,v)且u到n的最短距离中包含这条边,那么这条边就不警告. ...
- 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide
[题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...
- [USACO14OPEN]GPS的决斗Dueling GPS's
题目概况 题目描述 给你一个\(N\)个点的有向图,可能有重边. 有两个\(GPS\)定位系统,分别认为经过边\(i\)的时间为\(P_i\),和\(Q_i\). 每走一条边的时候,如果一个系统认为走 ...
- 2018.07.22 洛谷P3106 GPS的决斗Dueling GPS's(最短路)
传送门 图论模拟题. 这题直接写3个(可以压成一个)spfa" role="presentation" style="position: relative;&q ...
随机推荐
- Linux学习笔记-第14天 老朋友相见
熟悉的Apache,这次换了种方式和你见面.希望我能更懂你.
- 小白专场-FileTransfer-python语言实现
目录 更新.更全的<数据结构与算法>的更新网站,更有python.go.人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11407287.h ...
- Chrome保存整个网页为图片
打开需要保存为图片的网页 然后按F12,接着按Ctrl+Shift+P 在红框内输入full 点击下面的“Capture full size screenshot”就可以保存整个网页为图片了 原文出处 ...
- 为什么Linux 普通用户在虚拟机界面可以reboot 用ssh 不能reboot
应该是有 类似的权限控制. 如果是 localhost , 那么普通用户允许重启. 如果不是localhost, 比如ssh远程的,必须验证root权限.
- 【前端知识体系-NodeJS相关】NodeJS高频前端面试题整理
1. 为什么JavaScript是单线程? 防止DOM渲染冲突的问题: Html5中的Web Worker可以实现多线程 2.什么是任务队列? 任务队列"是一个先进先出的数据结构,排在前面的 ...
- 【转】EF架构~为EF DbContext生成的实体添加注释(T5模板应用)
嗨,没法说,EF4的TT模版加上注释后,升级到EF5的TT模版后,注释就不通用了,所以,还得再研究一下,然后把操作方法再分享出来,没辙的微软! T4模版可能有些凌乱,这在T5模版里有了不错的改进,但我 ...
- Kubernetes RBAC授权普通用户对命名空间访问权限
Kubernetes RBAC授权普通用户对命名空间访问权限 官方文档:https://www.cnblogs.com/xiangsikai/p/11413970.html kind: Role ap ...
- Gitlab 备份还原/迁移
Gitlab 备份还原 备份数据:通过命令进行备份操作 gitlab-rake gitlab:backup:create ... [DISABLED] Creating backup archive: ...
- 【Java面试题】short s1 = 1; s1 = s1 + 1;有错吗?short s1 = 1; s1 += 1;有错吗?
昨天去面试,虽然体验不是很好, 但是看到了这个面试题,当时感觉无从下手,所以在这里记录一下. 解决这道题之前,先复习一下Java的基本数据类型转换规则,以便后面对面试题的理解. java的基本数据类型 ...
- C# based on PdfSharp to split pdf files and get MemoryStream C#基于PdfSharp拆分pdf,并生成MemoryStream
install-package PdfSharp -v 1.51.5185-beta using System; using PdfSharp.Pdf; using System.IO; using ...