链接:

https://vjudge.net/problem/LightOJ-1318

题意:

In a country named "Ajob Desh", people play a game called "Ajob Game" (or strange game). This game is actually a game of words. The rules for the game are as follows:

It's an N player game and players are numbered from 1 to N. And the players alternate turns in a circular way. Player 1 starts first. The next turn is for player 2, then player 3 and so on. After the turn for the Nth player, player 1 gets his turn again and the same procedure is continued.

In each turn a player has to propose a pair of words. Each of the words should have length L, and the words should differ in exactly M positions. As their language has K alphabetical symbols, a word is a collection of symbols from these K alphabets.

The pair of words proposed by a player should differ in exactly M positions, it means that there should be exactly M positions where the two words have different symbols, and in other positions they have same symbols. For example, 'abc' and 'abd' differ in exactly 1 position, 'abc' and 'aca' differ in exactly 2 positions, 'abc' and 'cab' differ in exactly 3 positions.

In each turn a player has to propose a new pair of words. Two pairs are different if at least one word is different. Note that here pair refers to unordered pair. Let A, B, C be three different words, then (A, B) and (B, A) are same, but (A, C) and (A, B) are different. For example, if a player already proposed {abc, def}, then none can propose {abc, def} or {def, abc}. But a player can propose {abc, fed} or {abc, abc} or {pqc, abc} etc.

If a player fails to propose a new pair of words, he is treated as the loser of the game. And the game ends.

Let N = 2, K = 2, L = 2, M = 1 and the alphabet is {ab}. All the words of length 2 are: {aa, ab, ba, bb}. Player 1 chooses pair {aa, ab} (differs in 1 position as M = 1) then player 2 chooses pair {ab, bb}. After that player 1 chooses {aa, ba} then player 2 chooses {bb, ba}. And then there is no pair left for player 1, and so, player 1 will lose.

Now this game is played by N players who know this game very well thus they play optimally. You are given N, K, L and M; you have to find the loosing player.

思路:

一对字符串,一边是,\(k^l\)种,同时另一边需要有m个不同,则是\((k-1)^m\)

共有\(C_l^m*(k-1)^m*k^l\)

同时有重复,要除2,考虑2和n不一定互质,当k为偶数时用k/2,否则用(k-1)/2

代码:

// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10; LL n, k, l, m;
int pos;
int Pri[MAXN], Isp[MAXN], Cnt[MAXN]; void Init()
{
pos = 0;
for (int i = 2;i < MAXN;i++)
{
if (Isp[i] == 0)
Pri[++pos] = i;
for (int j = 1;j <= pos && 1LL*i*Pri[j] < MAXN;j++)
{
Isp[i*Pri[j]] = 1;
if (i%Pri[j] == 0)
break;
}
}
} void Upd(LL x, int sta)
{
for (int i = 1;i <= pos;i++)
{
LL tmp = x;
while(tmp)
{
Cnt[i] += sta*(tmp/Pri[i]);
tmp /= Pri[i];
}
}
} LL PowMod(LL a, LL b, LL p)
{
LL res = 1;
while(b)
{
if (b&1)
res = res*a%p;
a = a*a%p;
b >>= 1;
}
return res;
} LL C(LL n, LL m, LL p)
{
memset(Cnt, 0, sizeof(Cnt));
Upd(l, 1), Upd(m, -1), Upd(l-m, -1);
LL ans = 1;
for (int i = 1;i <= pos;i++)
ans = ans*PowMod(Pri[i], Cnt[i], p)%p;
return ans;
} int main()
{
// freopen("test.in", "r", stdin);
Init();
int t, cas = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cas);
scanf("%lld%lld%lld%lld", &n, &k, &l, &m);
LL ans;
if (m != 0)
{
if (k&1)
ans = C(l, m, n)*PowMod(k, l, n)%n*PowMod(k-1, m-1, n)%n*(k/2)%n;
else
ans = C(l, m, n)*PowMod(k, l-1, n)%n*PowMod(k-1, m, n)%n*(k/2)%n;
}
else
ans = PowMod(k, l, n);
printf(" %lld\n", ans+1);
} return 0;
}

LightOJ - 1318 - Strange Game(组合数)的更多相关文章

  1. Light OJ 1318 Strange Game 组合数+高速幂+分解因子

    长度为l的用k种字符组成的字符串有k^l中 当中m个字符要不同样 那就是k^l*C(l, m)*(k-1)^m 有反复 要除以2 可是你mod n了 不能直接除 n不一定是素数 所以不能乘以逆元 所以 ...

  2. LightOJ - 1067 - Combinations(组合数)

    链接: https://vjudge.net/problem/LightOJ-1067 题意: Given n different objects, you want to take k of the ...

  3. LightOJ - 1246 Colorful Board(DP+组合数)

    http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...

  4. lightoj 1060 - nth Permutation(组合数+贪心)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1060 题解:如果是不重复数的这些操作可以用康托展开的逆来求,如果是有重复数字出 ...

  5. lightoj 1095 - Arrange the Numbers(dp+组合数)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题解:其实是一道简单的组合数只要推导一下错排就行了.在这里就推导一下错排 ...

  6. lightoj 1226 - One Unit Machine(dp+大组合数去摸)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1226 题解:由于这些任务完成是有先后的所以最后一个完成的肯定是最后一个任务的子 ...

  7. lightoj 1134 - Be Efficient(组合数)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1134 题解:简单的一道组合题,现求一下前缀和,然后只要找前缀和膜m的结果相同的 ...

  8. LightOJ 1226 - One Unit Machine Lucas/组合数取模

    题意:按要求完成n个任务,每个任务必须进行a[i]次才算完成,且按要求,第i个任务必须在大于i任务完成之前完成,问有多少种完成顺序的组合.(n<=1000 a[i] <= 1e6 mod ...

  9. LightOJ - 1102 - Problem Makes Problem(组合数)

    链接: https://vjudge.net/problem/LightOJ-1102 题意: As I am fond of making easier problems, I discovered ...

随机推荐

  1. 资源对象的池化, java极简实现,close资源时,自动回收

    https://www.cnblogs.com/piepie/p/10498953.html 在java程序中对于资源,例如数据库连接,这类不能并行共享的资源对象,一般采用资源池的方式进行管理. 资源 ...

  2. OpenLayers加载百度离线瓦片地图(完美无偏移)

    本文使用OpenLayers最新版本V5.3.0演示:如何使用OpenLayer完美无偏移加载百度离线瓦片地图.OpenLayers 5.3.0下载地址为:https://github.com/ope ...

  3. vps建站施工预告

    作为一个小白,最近几天自己用vps搭了个站点,用来发发博客,偶尔还可以去外面看看.后面几章就来记一下过程吧! 结构极为简单,建站用的WordPress,目前也就只有最基础的发文章功能.不过由于习惯了m ...

  4. stvd使用中的一些问题

    1.stm8_interrupt_vector.c 会莫名其妙的自动出现,而且都是在项目目录下.进行如下操作 2.stvd编译时遇到no default placement for segment . ...

  5. 【实战经验】--Xilinx--IPcore--MCB(DDR3)运用

    1.背景与介绍 1)在导师安排的新的任务中,用到了一块2G大小的DDR3(MT41K128M16JT-107).本打算像之前用SDRAM一样自己写初始化,读写模块,但是师兄跟我说可以用Xilinx自带 ...

  6. JMeter安装及简单应用示例

    一.Jmeter下载 官网地址:http://jmeter.apache.org/ 1.进入官网 2.选中一个版本下载 3.解压安装即可 二.Jmeter环境变量配置 1.   电脑桌面----> ...

  7. python_封装redis_hash方法

    xshell 进入 虚拟环境 安装 redis workon py3env # 进入虚拟环境 pip install redis # 安装redis deactivate # 退出虚拟环境 简单的封装 ...

  8. robotframework_酷我音乐_That Girl

    *** Settings *** Library Selenium2Library *** Test Cases *** music # 打开浏览器 Open Browser https://www. ...

  9. windows上git clone命令速度过慢问题的解决

    在windows上用git clone 命令克隆一个仓库,速度非常的慢,但是浏览器访问github的速度确挺正常的,我也用了翻墙软件(SSR). git设置一下全局代理可以解决这个问题: git co ...

  10. IIS err_connection_timed_out(响应时间过长)

    场景:我在服务器的IIS上部署了一个网站,服务器上可以正常打开,然后我用自己的电脑访问,出现如下错误: 原因:服务器的防火墙对入站规则进行了一些限制. 解决方法:1.打开服务器的防火墙-----> ...