UVA - 11374 Airport Express (Dijkstra模板+枚举)
Description
Problem D: Airport Express |
In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, the
Economy-Xpress and the Commercial-Xpress. They travel at different speeds, take different routes and have different costs.
Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn't have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used
the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him.
Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.
Input
The input consists of several test cases. Consecutive cases are separated by a blank line.
The first line of each case contains 3 integers, namely N,
S and E (2 ≤ N ≤ 500, 1 ≤
S, E ≤ N), which represent the number of stations, the starting point and where the airport is located respectively.
There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The next
M lines give the information of the routes of the Economy-Xpress. Each consists of three integers
X, Y and Z (X,
Y ≤ N, 1 ≤ Z ≤ 100). This means
X and Y are connected and it takes
Z minutes to travel between these two stations.
The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The next
K lines contain the information of the Commercial-Xpress in the same format as that of the Economy-Xpress.
All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.
Output
For each case, you should first list the number of stations which Jason would visit in order. On the next line, output "Ticket Not Used" if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train
of Commercial-Xpress. Finally, print the total time for the journey on the last line. Consecutive sets of output must be separated by a blank line.
Sample Input
4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3
Sample Output
1 2 4
2
5
题意:去机场有两种方法,一个是经济线一个是商业线。线路、速度、价格都不同样,你有一张商业票。能够坐一站商业线。而其它时候仅仅能做经济线,换乘时间不计算,你的任务是找一条去机场最快的线路。
思路:枚举商业线的起点和终点,然后分别从我们的起点和终点最短路。然后找出最优解就能够了
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 505;
const int INF = 0x3f3f3f3f; struct Edge {
int from, to, dist;
}; struct HeapNode {
int d, u;
bool operator< (const HeapNode rhs) const {
return d > rhs.d;
}
}; struct Dijkstra {
int n, m; // 点数和边数
vector<Edge> edges; //边列表
vector<int> G[MAXN]; // 每一个点出发的边编号(0開始)
bool done[MAXN]; // 是否已标记
int d[MAXN]; //s 到各个点的距离
int p[MAXN]; //最短路中上一个点,也能够是上一条边 void init(int n) {
this->n = n;
for (int i = 0; i < n; i++)
G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int dist) {
edges.push_back((Edge){from, to, dist});
m = edges.size();
G[from].push_back(m-1);
} void dijkstra(int s) {
priority_queue<HeapNode> Q;
for (int i = 0; i < n; i++)
d[i] = INF;
d[s] = 0;
memset(done, 0, sizeof(done));
Q.push((HeapNode){0, s});
while (!Q.empty()) {
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if (done[u])
continue;
done[u] = true;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (d[e.to] > d[u] + e.dist) {
d[e.to] = d[u] + e.dist;
p[e.to] = e.from;
Q.push((HeapNode){d[e.to], e.to});
}
}
}
} void getPath(vector<int> &path, int s, int e) {
int cur = e;
while (1) {
path.push_back(cur);
if (cur == s)
return ;
cur = p[cur];
}
}
};
int n, m, k, s, e;
int x, y, z;
vector<int> path; int main() {
int first = 1;
while (scanf("%d%d%d", &n, &s, &e) != EOF) {
if (first)
first = 0;
else printf("\n");
s--, e--;
Dijkstra ans[2];
ans[0].init(n);
ans[1].init(n);
scanf("%d", &m);
while (m--) {
scanf("%d%d%d", &x, &y, &z);
x--, y--;
ans[0].AddEdge(x, y, z);
ans[0].AddEdge(y, x, z);
ans[1].AddEdge(x, y, z);
ans[1].AddEdge(y, x, z);
}
ans[0].dijkstra(s);
ans[1].dijkstra(e);
scanf("%d", &k);
path.clear();
int Min = ans[0].d[e];
int flagx = -1, flagy = -1;
while (k--) {
scanf("%d%d%d", &x, &y, &z);
x--, y--;
if (Min > ans[0].d[x] + z + ans[1].d[y]) {
Min = ans[0].d[x] + z + ans[1].d[y];
flagx = x, flagy = y;
}
if (Min > ans[1].d[x] + z + ans[0].d[y]) {
Min = ans[1].d[x] + z + ans[0].d[y];
flagx = y, flagy = x;
}
}
if (flagx == -1) {
ans[0].getPath(path, s, e);
reverse(path.begin(), path.end());
for (int i = 0; i < path.size()-1; i++)
printf("%d ", path[i]+1);
printf("%d\n", path[path.size()-1]+1);
printf("Ticket Not Used\n");
printf("%d\n", Min);
}
else {
ans[0].getPath(path, s, flagx);
reverse(path.begin(), path.end());
ans[1].getPath(path, e, flagy);
for (int i = 0; i < path.size()-1; i++)
printf("%d ", path[i]+1);
printf("%d\n", path[path.size()-1]+1);
printf("%d\n", flagx+1);
printf("%d\n", Min);
}
}
return 0;
}
UVA - 11374 Airport Express (Dijkstra模板+枚举)的更多相关文章
- UVa 11374 - Airport Express ( dijkstra预处理 )
起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b); ans = min( d1[a] + cost(a, b ...
- UVA - 11374 - Airport Express(堆优化Dijkstra)
Problem UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...
- UVA 11374 Airport Express SPFA||dijkstra
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)
题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...
- UVA 11374 Airport Express(枚举+最短路)
枚举每条商业线<a, b>,设d[i]为起始点到每点的最短路,g[i]为终点到每点的最短路,ans便是min{d[a] + t[a, b] + g[b]}.注意下判断是否需要经过商业线.输 ...
- UVA 11374 Airport Express (最短路)
题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...
- UVA 11374 Airport Express(最短路)
最短路. 把题目抽象一下:已知一张图,边上的权值表示长度.现在又有一些边,只能从其中选一条加入原图,使起点->终点的距离最小. 当加上一条边a->b,如果这条边更新了最短路,那么起点st- ...
- uva 11374 最短路+记录路径 dijkstra最短路模板
UVA - 11374 Airport Express Time Limit:1000MS Memory Limit:Unknown 64bit IO Format:%lld & %l ...
- 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)
layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...
随机推荐
- Lua表(table)的用法_个人总结
Lua表(table)的用法_个人总结 1.表的创建及表的介绍 --table 是lua的一种数据结构用来帮助我们创建不同的数据类型.如:数组和字典--lua table 使用关联型数组,你可以用任意 ...
- pip install MySQL-python error "can't open config-win.h"
http://blog.csdn.net/xxm524/article/details/48754139
- Cloudera’s Distribution Including Apache Hadoop(CDH)安装过程
文档地址:https://www.cloudera.com/documentation.html https://www.cloudera.com/documentat ...
- CSS三栏布局的四种方法
总括: 不管是三栏布局还是两栏布局都是我们在平时项目里经常使用的,也许你不知道什么事三栏布局什么是两栏布局但实际已经在用,或许你知道三栏布局的一种或两种方法,但实际操作中也只会依赖那某一种方法,本文具 ...
- P5304 [GXOI/GZOI2019]旅行者(最短路/乱搞)
luogu bzoj Orz自己想出神仙正解的sxy 描述略 直接把所有起点推进去跑dijkstra... 并且染色,就是记录到这个点的最短路是由哪个起点引导出来的 然后再把所有边反指跑一次... 之 ...
- Python之爬虫-猫眼电影
Python之爬虫-猫眼电影 #!/usr/bin/env python # coding: utf-8 import json import requests import re import ti ...
- MySQL-----查
数据库在我眼中就是增删改查,而查,我觉得是数据库最费劲的,数据库的花式查,各种查.下面咱们不废话,就是干. 查: **查数据库版本** select version(); **查登录用户** sele ...
- UVA - 10976 分数拆分
题意: 给定正整数k(1<=k <= 10000),找出所有正整数 x>= y, 使得1/k = 1/x + 1/y 分析: 因为 x >= y 所以 1/x <= 1/ ...
- ASP.net在IE6下乱码问题
今天处理程序的时候遇到一个坑爹的问题 该死的IE6传中文参数会出现 类似于◆的乱码 不过终于解决了 也许解决的方法有很多 和大家分享下我的解决方案 我用的javascript中 传的参数 < ...
- HDU 5458 Stability
Stability Time Limit: 2000ms Memory Limit: 102400KB This problem will be judged on HDU. Original ID: ...