Description

Problem D: Airport Express

In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, the
Economy-Xpress and the Commercial-Xpress. They travel at different speeds, take different routes and have different costs.

Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn't have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used
the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him.

Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.

Input

The input consists of several test cases. Consecutive cases are separated by a blank line.

The first line of each case contains 3 integers, namely N,
S and E (2 ≤ N ≤ 500, 1 ≤
S, EN), which represent the number of stations, the starting point and where the airport is located respectively.

There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The next
M lines give the information of the routes of the Economy-Xpress. Each consists of three integers
X, Y and Z (X,
YN, 1 ≤ Z ≤ 100). This means
X and Y are connected and it takes
Z minutes to travel between these two stations.

The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The next
K lines contain the information of the Commercial-Xpress in the same format as that of the Economy-Xpress.

All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.

Output

For each case, you should first list the number of stations which Jason would visit in order. On the next line, output "Ticket Not Used" if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train
of Commercial-Xpress. Finally, print the total time for the journey on the last line. Consecutive sets of output must be separated by a blank line.

Sample Input

4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3

Sample Output

1 2 4
2
5

题意:去机场有两种方法,一个是经济线一个是商业线。线路、速度、价格都不同样,你有一张商业票。能够坐一站商业线。而其它时候仅仅能做经济线,换乘时间不计算,你的任务是找一条去机场最快的线路。

思路:枚举商业线的起点和终点,然后分别从我们的起点和终点最短路。然后找出最优解就能够了

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 505;
const int INF = 0x3f3f3f3f; struct Edge {
int from, to, dist;
}; struct HeapNode {
int d, u;
bool operator< (const HeapNode rhs) const {
return d > rhs.d;
}
}; struct Dijkstra {
int n, m; // 点数和边数
vector<Edge> edges; //边列表
vector<int> G[MAXN]; // 每一个点出发的边编号(0開始)
bool done[MAXN]; // 是否已标记
int d[MAXN]; //s 到各个点的距离
int p[MAXN]; //最短路中上一个点,也能够是上一条边 void init(int n) {
this->n = n;
for (int i = 0; i < n; i++)
G[i].clear();
edges.clear();
} void AddEdge(int from, int to, int dist) {
edges.push_back((Edge){from, to, dist});
m = edges.size();
G[from].push_back(m-1);
} void dijkstra(int s) {
priority_queue<HeapNode> Q;
for (int i = 0; i < n; i++)
d[i] = INF;
d[s] = 0;
memset(done, 0, sizeof(done));
Q.push((HeapNode){0, s});
while (!Q.empty()) {
HeapNode x = Q.top();
Q.pop();
int u = x.u;
if (done[u])
continue;
done[u] = true;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (d[e.to] > d[u] + e.dist) {
d[e.to] = d[u] + e.dist;
p[e.to] = e.from;
Q.push((HeapNode){d[e.to], e.to});
}
}
}
} void getPath(vector<int> &path, int s, int e) {
int cur = e;
while (1) {
path.push_back(cur);
if (cur == s)
return ;
cur = p[cur];
}
}
};
int n, m, k, s, e;
int x, y, z;
vector<int> path; int main() {
int first = 1;
while (scanf("%d%d%d", &n, &s, &e) != EOF) {
if (first)
first = 0;
else printf("\n");
s--, e--;
Dijkstra ans[2];
ans[0].init(n);
ans[1].init(n);
scanf("%d", &m);
while (m--) {
scanf("%d%d%d", &x, &y, &z);
x--, y--;
ans[0].AddEdge(x, y, z);
ans[0].AddEdge(y, x, z);
ans[1].AddEdge(x, y, z);
ans[1].AddEdge(y, x, z);
}
ans[0].dijkstra(s);
ans[1].dijkstra(e);
scanf("%d", &k);
path.clear();
int Min = ans[0].d[e];
int flagx = -1, flagy = -1;
while (k--) {
scanf("%d%d%d", &x, &y, &z);
x--, y--;
if (Min > ans[0].d[x] + z + ans[1].d[y]) {
Min = ans[0].d[x] + z + ans[1].d[y];
flagx = x, flagy = y;
}
if (Min > ans[1].d[x] + z + ans[0].d[y]) {
Min = ans[1].d[x] + z + ans[0].d[y];
flagx = y, flagy = x;
}
}
if (flagx == -1) {
ans[0].getPath(path, s, e);
reverse(path.begin(), path.end());
for (int i = 0; i < path.size()-1; i++)
printf("%d ", path[i]+1);
printf("%d\n", path[path.size()-1]+1);
printf("Ticket Not Used\n");
printf("%d\n", Min);
}
else {
ans[0].getPath(path, s, flagx);
reverse(path.begin(), path.end());
ans[1].getPath(path, e, flagy);
for (int i = 0; i < path.size()-1; i++)
printf("%d ", path[i]+1);
printf("%d\n", path[path.size()-1]+1);
printf("%d\n", flagx+1);
printf("%d\n", Min);
}
}
return 0;
}

UVA - 11374 Airport Express (Dijkstra模板+枚举)的更多相关文章

  1. UVa 11374 - Airport Express ( dijkstra预处理 )

    起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b);  ans = min( d1[a] + cost(a, b ...

  2. UVA - 11374 - Airport Express(堆优化Dijkstra)

    Problem    UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...

  3. UVA 11374 Airport Express SPFA||dijkstra

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  4. UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)

    题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...

  5. UVA 11374 Airport Express(枚举+最短路)

    枚举每条商业线<a, b>,设d[i]为起始点到每点的最短路,g[i]为终点到每点的最短路,ans便是min{d[a] + t[a, b] + g[b]}.注意下判断是否需要经过商业线.输 ...

  6. UVA 11374 Airport Express (最短路)

    题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...

  7. UVA 11374 Airport Express(最短路)

    最短路. 把题目抽象一下:已知一张图,边上的权值表示长度.现在又有一些边,只能从其中选一条加入原图,使起点->终点的距离最小. 当加上一条边a->b,如果这条边更新了最短路,那么起点st- ...

  8. uva 11374 最短路+记录路径 dijkstra最短路模板

    UVA - 11374 Airport Express Time Limit:1000MS   Memory Limit:Unknown   64bit IO Format:%lld & %l ...

  9. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

随机推荐

  1. 类方法__setattr__,__delattr__,__getattr__

    __getattr__,_delattr_,_getattr_ class Foo: x = 1 def __init__(self, y): self.y = y def __getattr__(s ...

  2. JS的type类型为 text/template

    JS标签中有时候会看见<script type="text/tmplate" >,大概就是一个放置模板的地方,而这些东西并不显示在页面 在js里面,经常需要使用js往页 ...

  3. oracle数据库使用hint来让模糊查询走索引

    在没有创建数据直方图之前,查询优化器是cbo,可能不会选择代价最低(效率最高)的方式查询. 先创建表 --日语假名表 CREATE TABLE JAPANESE_SOUNDMARK ( ID INTE ...

  4. HR教你面试时怎么谈出高工资

    不是任何时候谈钱都会伤感情,比如跟客户谈合同报价,跟房东谈房租,以及面试时和公司HR谈新工作的薪酬待遇. 这事儿一般不需要你先开口.在面试进入尾声的时候,如果HR对你还算满意,通常就会开始问你目前的薪 ...

  5. mysql图形化工具获取表的源码

    打开数据库,选择要查看的表,点击右键>对象信息>DDL:

  6. [Python3网络爬虫开发实战] 1.5.4-RedisDump的安装

    RedisDump是一个用于Redis数据导入/导出的工具,是基于Ruby实现的,所以要安装RedisDump,需要先安装Ruby. 1. 相关链接 GitHub:https://github.com ...

  7. [Python3网络爬虫开发实战] 1.2.2-Selenium的安装

    Selenium是一个自动化测试工具,利用它我们可以驱动浏览器执行特定的动作,如点击.下拉等操作.对于一些JavaScript渲染的页面来说,这种抓取方式非常有效.下面我们来看看Selenium的安装 ...

  8. xphrof性能分析线上部署实践

    说明 将xhprof部署在线上环境,在特定情况下进行性能分析,方便快捷的排查线上性能问题. 通过参数指定及添加代码行触发进入性能分析,并将结果保存入MongoDB. 因为xhprof对性能的影响,只部 ...

  9. LINUX:Contos7.0 / 7.2 LAMP+R 下载安装Apache篇

    文章来源:http://www.cnblogs.com/hello-tl/p/7568803.html 更新时间:2017-09-21 15:38 简介 LAMP+R指Linux+Apache+Mys ...

  10. python 通过句柄获取窗口内容

    -- enoding:utf-8 -- 生成 buffer 对象 import win32con from win32gui import PyMakeBuffer, SendMessage, PyG ...