【题解】

  原来线段树还可以这么玩。。

  我们用线段树维护连通性。对于一个矩形,我们用4个标记维护4个点的联通情况,再用两个标记维护右边两个点与它们右边的与它们在同一行的点的联通情况。

  画图表示,就是

    

  另一个关键问题是对于询问(r1,c1,r2,c2),并不是只可以走c1到c2之间的部分,它可以绕路走,这就需要我们在处理询问的时候把c1,c2进行扩展。具体说来,就是让c1一直向左走,让c2一直向右走,

然后查询新的(r1,c1,r2,c2). 为什么这样做是对的呢?

  

  

  通过上图我们可以发现要绕路走必须走到跟r1,r2不同的行,也就是一定会通过c1左边的竖着的边以及c2右边的竖着的边。而且一定存在一种走法使得绕路走的部分形成一个类似括号的形状。我们把c1一直左移得到c1',就可以保证[c1',c1]之间一定有竖着的边(如果c1到c1左边联通的部分之间有竖边存在的话)。右边的c2也是同理。这样查询新的c1,c2就转化成了没有绕路走的情况。

 // luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#define N 100010
#define rg register
#define ls (u<<1)
#define rs (u<<1|1)
using namespace std;
int n;
struct tree{
int t1,t2,t3,t4,t5,t6;
}a[N<<];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
inline void pushup(int u){
a[u].t1=(a[ls].t1&&a[ls].t5&&a[rs].t1)||(a[ls].t3&&a[ls].t6&&a[rs].t4);
a[u].t2=(a[ls].t2&&a[ls].t6&&a[rs].t2)||(a[ls].t4&&a[ls].t5&&a[rs].t3);
a[u].t3=(a[ls].t1&&a[ls].t5&&a[rs].t3)||(a[ls].t3&&a[ls].t6&&a[rs].t2);
a[u].t4=(a[ls].t4&&a[ls].t5&&a[rs].t1)||(a[ls].t2&&a[ls].t6&&a[rs].t4);
a[u].t5=a[rs].t5;
a[u].t6=a[rs].t6;
}
void build(int u,int l,int r){
if(l<r){
int mid=(l+r)>>;
build(ls,l,mid); build(rs,mid+,r);
}
else a[u].t1=a[u].t2=;
}
void update(int u,int l,int r,int pos,int type,int del){
if(l==r){
if(type==||type==) a[u].t3=a[u].t4=del;
if(type==) a[u].t5=del;
if(type==) a[u].t6=del;
return;
}
int mid=(l+r)>>;
if(pos<=mid) update(ls,l,mid,pos,type,del);
else update(rs,mid+,r,pos,type,del);
pushup(u);
}
tree query(int u,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr) return a[u];
tree ret,L,R; int mid=(l+r)>>;
L=R=(tree){,,,,,};
if(ql<=mid) ret=L=query(ls,l,mid,ql,qr);
if(qr>mid) ret=R=query(rs,mid+,r,ql,qr);
if(ql<=mid&&qr>mid){
ret.t1=(L.t1&&L.t5&&R.t1)||(L.t3&&L.t6&&R.t4);
ret.t2=(L.t2&&L.t6&&R.t2)||(L.t4&&L.t5&&R.t3);
ret.t3=(L.t1&&L.t5&&R.t3)||(L.t3&&L.t6&&R.t2);
ret.t4=(L.t4&&L.t5&&R.t1)||(L.t2&&L.t6&&R.t4);
}
return ret;
}
int goleft(int u,int l,int r,int type,int pos){
if(r==pos&&((type==&&a[u].t1)||(type==&&a[u].t2))) return l;
int mid=(l+r)>>;
if(pos<=mid) return goleft(ls,l,mid,type,pos);
int L=goleft(rs,mid+,r,type,pos);
if(L==mid+&&((type==&&a[ls].t5)||(type==&&a[ls].t6)))
return goleft(ls,l,mid,type,mid);
return L;
}
int goright(int u,int l,int r,int type,int pos){
if(l==pos&&((type==&&a[u].t1)||(type==&&a[u].t2))) return r;
int mid=(l+r)>>;
if(pos>mid) return goright(rs,mid+,r,type,pos);
int R=goright(ls,l,mid,type,pos);
if(R==mid&&((type==&&a[ls].t5)||(type==&&a[ls].t6)))
return goright(rs,mid+,r,type,mid+);
return R;
}
int main(){
n=read(); build(,,n);
while(){
char s[]; scanf("%s",s+);
while(s[]!='E'&&s[]!='C'&&s[]!='O'&&s[]!='A') scanf("%s",s+);
if(s[]=='E') break;
int r1=read(),c1=read(),r2=read(),c2=read();
if(c1>c2) swap(c1,c2),swap(r1,r2);
if(s[]=='C'){
if(c1==c2) update(,,n,c1,,);
if(r1==r2) update(,,n,c1,r1==?:,);
}
if(s[]=='O'){
if(c1==c2) update(,,n,c1,,);
if(r1==r2) update(,,n,c1,r1==?:,);
}
if(s[]=='A'){
c1=goleft(,,n,r1,c1); c2=goright(,,n,r2,c2);
tree ans=query(,,n,c1,c2);
bool flag=;
if(r1==&&r2==) flag=ans.t1;
if(r1==&&r2==) flag=ans.t2;
if(r1==&&r2==) flag=ans.t3;
if(r1==&&r2==) flag=ans.t4;
puts(flag?"Y":"N");
}
}
return ;
}

洛谷 4246 BZOJ 1018 [SHOI2008]堵塞的交通的更多相关文章

  1. 数据结构(线段树):BZOJ 1018: [SHOI2008]堵塞的交通traffic

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2638  Solved: 864 Descri ...

  2. BZOJ 1018 [SHOI2008]堵塞的交通traffic

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2247  Solved: 706[Submit ...

  3. BZOJ 1018: [SHOI2008]堵塞的交通traffic [线段树 区间信息]

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 3064  Solved: 1027[Submi ...

  4. [BZOJ 1018] [SHOI2008] 堵塞的交通traffic 【线段树维护联通性】

    题目链接:BZOJ - 1018 题目分析 这道题就说明了刷题少,比赛就容易跪..SDOI Round1 Day2 T3 就是与这道题类似的..然而我并没有做过这道题.. 这道题是线段树维护联通性的经 ...

  5. BZOJ 1018: [SHOI2008]堵塞的交通traffic(线段树)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1018 用线段树维护区间连通性,对于每一个区间记录6个域表示(左上,左下)(左上,右上)(右上, ...

  6. BZOJ.1018.[SHOI2008]堵塞的交通(线段树维护连通性)

    题目链接 只有两行,可能的路径数不多,考虑用线段树维护各种路径的连通性. 每个节点记录luru(left_up->right_up),lurd,ldru,ldrd,luld,rurd,表示这个区 ...

  7. BZOJ 1018: [SHOI2008]堵塞的交通traffic(线段树分治+并查集)

    传送门 解题思路 可以离线,然后确定每个边的出现时间,算这个排序即可.然后就可以线段树分治了,连通性用并查集维护,因为要撤销,所以要按秩合并,时间复杂度\(O(nlog^2 n)\) 代码 #incl ...

  8. 1018: [SHOI2008]堵塞的交通traffic

    1018: [SHOI2008]堵塞的交通traffic 链接 分析: 用线段树维护区间的四个端点的联通情况,然后查询的时候,把所有覆盖到的区间合并起来即可. 六种情况左上到右上(左边到右边的情况)… ...

  9. 【BZOJ】1018: [SHOI2008]堵塞的交通traffic

    http://www.lydsy.com/JudgeOnline/problem.php?id=1018 题意:有2行,每行有c(c<=100000)个城市,则一共有c-1个格子,现在有q(q& ...

随机推荐

  1. 洛谷P2680 运输计划——树上差分

    题目:https://www.luogu.org/problemnew/show/P2680 久违地1A了好高兴啊! 首先,要最大值最小,很容易想到二分: 判断当前的 mid 是否可行,需要看看有没有 ...

  2. mysql数据类型和java对应表(copy)

    [说明] 资料来自:http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-type-conversions.html My ...

  3. Ubuntu搭建Eclipse+JDK+SDK的Android (转载)

    转自:http://blog.csdn.net/ithomer/article/details/6960989 今晚重装Ubuntu系统,重新安装了一套eclipse+jdk+SDK的Android开 ...

  4. 运行Android Studio总是未发现设备

    1.未发现虚拟机设备

  5. (博弈论)51NOD 1066 Bash游戏

    有一堆石子共有N个.A B两个人轮流拿,A先拿.每次最少拿1颗,最多拿K颗,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得比赛. 例如N = 3 ...

  6. php使用邮箱发送验证码

    如果看着文字眼乏就去看看视频吧-> 如何注册腾讯企业邮箱 https://www.bilibili.com/video/av14351397/ 如何在项目中使用 https://www.bili ...

  7. mycat查表报错Invalid DataSource:0解决方法

    报错时机 登录没问题 use库没问题 select任意一张表均报错 报错信息 mysql> select * from mydb.tb_user; ERROR 3009 (HY000): jav ...

  8. O - Combinations (组合数学)

    Description Computing the exact number of ways that N things can be taken M at a time can be a great ...

  9. 如何快速部署Oracle Database

    Oracle Database在Linux系统上的安装是每一个初学者都必须面临的问题,只有正确的配置好了环境,才能进行后续的深入学习.本文旨在说明如何快速的部署Oracle的单实例环境,对于初学者,还 ...

  10. jQuery中$this和$(this)的区别

    要写一个点击弹窗任意地方,关闭弹窗.点击事件写标签在元素上 onclick =  closepop(this),这时候很容易搞不清楚怎么去获取当前元素 function closepop(e){ va ...