P1349 广义斐波那契数列

题目描述

广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列。今给定数列的两系数$p$和$q$,以及数列的最前两项$a_1$和$a_2$,另给出两个整数$n$和$m$,试求数列的第$n$项$a_n$除以$m$的余数。

矩阵乘法大法好,太好用了

斐波那契通项公式变成了

$F[n]=p*F[n-2]+q*F[n-1]$

那么转移矩阵也随之改变,如何求解这个转移矩阵呢?

根据通项公式以及矩阵乘法法则:

$F[n-2],F[n-1]$ <-这是一个$1*2$的初始矩阵

$F[n-1],F[n]$ <-这是一个$1*2$的结束矩阵

也就是$F[n-1],p*F[n-2]+q*F[n-1]$

矩阵运算法则:$C_{i,j}=\sum A_{i,k}*B_{k,j}$

那么转移矩阵显而易见:

$0,q$

$1,p$

<-这是一个$2*2$的转移矩阵

然后矩阵快速幂就好啦。。。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring> #define LL long long
#define N 10
using namespace std; class Martix{
public:
LL n,m;
LL A[N][N];
Martix(){
memset(A,,sizeof(A));
}
};
LL mod; Martix operator * (Martix A,Martix B){
Martix C;
int n=A.n,m=B.m,p=A.m;
C.n=n,C.m=m;
for(LL i=;i<=n;i++)
for(LL j=;j<=m;j++)
for(LL k=;k<=p;k++)
C.A[i][j]=(A.A[i][k]*B.A[k][j]%mod+C.A[i][j]%mod)%mod;
/*for(int i=1;i<=C.n;i++) {
for(int j=1;j<=m;j++)
printf("%d ",C.A[i][j]);
puts("");
}*/
return C;
} LL p,q,a1,a2,n; Martix A,B;
inline LL pow(){
for(;n;n>>=,A=A*A)
if(n&) B=B*A;
return B.A[][];
} int main()
{
scanf("%lld%lld%lld%lld%lld%lld",&p,&q,&a1,&a2,&n,&mod);
n-=;
A.n=A.m=;
A.A[][]=,A.A[][]=q,A.A[][]=,A.A[][]=p;
B.n=,B.m=;
B.A[][]=a1,B.A[][]=a2; printf("%lld\n",pow());
return ;
}

洛谷——P1349 广义斐波那契数列(矩阵加速)的更多相关文章

  1. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  2. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  3. 洛谷——P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  4. 洛谷P1349 广义斐波那契数列

    传送门 话说谁能告诉我矩阵怎么用latex表示…… 差不多就这样 //minamoto #include<iostream> #include<cstdio> #include ...

  5. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  6. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  7. Codevs 1574 广义斐波那契数列(矩阵乘法)

    1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...

  8. P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  9. Luogu P1349 广义斐波那契数列

    解题思路 既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解.大家都知道斐波那契的初始矩阵如下 $$\begin{bmatrix}1&1\\1&0\end{bmat ...

随机推荐

  1. Robot Framework 怎样写好Test Case

    1.介绍 这是一个关于如何用Robot Framework写好Test Case的高层次的指导准则 怎样实际的与系统进行交互不在此文档范围内 最重要的准则是使测试用例尽可能的让熟悉此领域的人觉得简单易 ...

  2. luogu 3953 逛公园

    noip2017 D1T3 逛公园 某zz选手看到数据范围直接就最短路计数了,结果写错了爆零 题目大意: N个点M条边构成的有向图,且没有自环和重边.其中1号点是起点,N号点是公园的终点,每条边有一个 ...

  3. MySQL:目录

    ylbtech-MySQL:目录 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   作者:ylbtech出处:http://ylbtech ...

  4. attr 和 prop的区别和使用

    一. attr和prop的区别 要想弄清楚attr和prop的区别,就要先搞清楚js中使用DOM方法获取设置属性和使用对象方法获取设置属性的区别. 在javascript中使用DOM方法设置获取属性值 ...

  5. J20170604-hm

    丸める   四舍五入 文字化け 乱码 わきまえる 弁える 辨别,识相 御構い 张罗,招待,款待 お構いなしに 不加考虑 しおり ブックマーク 书签 スタイルシート 样式表

  6. bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】

    有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...

  7. bzoj 1706: [usaco2007 Nov]relays 奶牛接力跑【矩阵乘法+Floyd】

    唔不知道怎么说--大概核心是把矩阵快速幂的乘法部分变成了Floyd一样的东西,非常之神 首先把点离散一下,最多有200个,然后建立邻接矩阵,a[u][v]为(u,v)之间的距离,没路就是inf 然后注 ...

  8. [App Store Connect帮助]六、测试 Beta 版本(1)TestFlight Beta 版测试概述(iOS、Apple TVOS、watchOS)

    TestFlight Beta 版测试让您可以分发您 App 的 Beta 版构建版本给测试员并收集反馈.您可以在您的 App Store Connect 帐户中一次为至多 100 个 App 启用 ...

  9. nginx+thinkPhp配置虚拟主机和伪静态规则重写

    /usr/local/nginx/conf/nginx.conf 进行配置 server    {        listen 80 default_server;        #listen [: ...

  10. KMP POJ 2406 Power Strings

    题目传送门 /* 题意:一个串有字串重复n次产生,求最大的n KMP:nex[]的性质应用,感觉对nex加深了理解 */ /************************************** ...