简单动态规划——最长公共子序列&&最长回文子序列&&最长上升||下降子序列
最长公共子序列,顾名思义当然是求两个字符串的最长公共子序列啦,当然,这只是一道非常菜的动规,所以直接附上代码:
#include<iostream>
#include<cstdio>
using namespace std;
char a[],b[];
int dp[][];
int main()
{
int m,n;
cin>>m>>n;
for(int i = ;i <= m;i ++)
{
cin>>a[i];
}
for(int i = ;i <= n;i ++)
cin>>b[i];
for(int i = ;i <= m;i ++)
{
for(int j = ;j <= n;j ++)
{
dp[i][j] = max(dp[i-][j],dp[i][j-]);
if(a[i] == b[j])
dp[i][j] = max(dp[i-][j-]+,dp[i][j]);
}
}
cout<<dp[m][n];
return ;
}
而最长回文子序列和第一道题有什么关系呢?答案其实很简单,只要把原来的字符串倒着保存一遍,然后进行第一题的比较就可以了,代码如下:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int a[],b[];
int dp[][];
int main()
{
int m;
cin>>m;
for(int i = ;i <= m;i ++)
{
cin>>a[i];
}
for(int i = ;i <= m; i++)
b[i] = a[m - i + ];
for(int i = ;i <= m;i ++)
{
for(int j = ;j <= m;j ++)
{
dp[i][j] = max(dp[i-][j],dp[i][j-]);
if(a[i] == b[j])
dp[i][j] = max(dp[i-][j-]+,dp[i][j]);
}
}
cout<<dp[m][m];
return ;
}
有了第二题的启发,最长上升和下降子序列也很好想了,就是把所得的字符串进行一次排序,再进行一次最长公共子序列就可以了,代码如下:
最长上升子序列:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int a[],b[];
int dp[][];
int main()
{
int m;
cin>>m;
for(int i = ;i <= m;i ++)
{
cin>>a[i];
b[i] = a[i];
}
sort(b + ,b + m +);
for(int i = ;i <= m;i ++)
{
for(int j = ;j <= m;j ++)
{
dp[i][j] = max(dp[i-][j],dp[i][j-]);
if(a[i] == b[j])
dp[i][j] = max(dp[i-][j-]+,dp[i][j]);
}
}
cout<<dp[m][m];
return ;
}
最长下降子序列:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[],b,c[];
int dp[][];
int main()
{
cin>>b;
for(int i = ;i < b; i++)
{
cin>>a[i];
c[i] = a[i];
}
sort(c,c + b);
for(int i = ;i < b; i++)
{
for(int j = b - ;j >= ; j--)
{
dp[i][j] = max(dp[abs(i - )][j],dp[i][j + ]);
if(a[i] == c[j])
dp[i][j] = max(dp[abs(i - )][j + ] + ,dp[i][j]);
}
}
cout<<dp[b - ][];
return ;
}
其实,还有一个nlogn的方法,只不过用了stl中的upper_bound;
用法:下表 = upper_bound(数组开头,数组结尾,查找值) - 数组名
和sort类似
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int main()
{
int a[100],m,d[100],l = 1,k;
memset(d,0,sizeof(d));
cin>>m;
for(int i = 0;i < m;i++)
cin>>a[i];
d[1] = a[1];
for(int i = 1;i < m;i++)
{
if(a[i] >= d[l])
{
l++;
d[l] = a[i];
}
else
{
k = upper_bound(d,d + l,a[i]) - d;
d[k] = a[i];
}
}
cout<<l<<endl;
return 0;
}
/*
5
1 2 3 4 5
*/
最后,姆爷镇楼!!!
简单动态规划——最长公共子序列&&最长回文子序列&&最长上升||下降子序列的更多相关文章
- [LeetCode] 647. 回文子串 ☆☆☆(最长子串、动态规划、中心扩展算法)
描述 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被计为是不同的子串. 示例 1: 输入: "abc" ...
- 51Nod 1092 回文字符串 | 最长公共子序列变形
求字符串和其逆的最长公共子序列,需要添加的字符数就为长度-最长公共子序列长 #include "stdio.h" #include "string.h" #de ...
- [LeetCode] 5. 最长回文子串 ☆☆☆(最长子串、动态规划)
最长回文子串 (动态规划法.中心扩展算法) https://leetcode-cn.com/problems/longest-palindromic-substring/solution/xiang- ...
- HDU 3068 最长回文 【最长回文子串】
和上一题一样,不过这题只是要求最长回文子串的长度 在此采用了非常好用的Manacher算法 据说还是O(n) 的效率QAQ 详细用法参考了上篇博客的参考资料,这两天有空学习一下~ Source cod ...
- 给定一个字符串s,你可以从中删除一些字符,使得剩下的串是一个回文串。如何删除才能使得回文串最长呢? 输出需要删除的字符个数。
// ConsoleApplication1.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...
- 动态规划经典——最长公共子序列问题 (LCS)和最长公共子串问题
一.最长公共子序列问题(LCS问题) 给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共子序列,并返回其长度.例如: A = "HelloWorld" B = & ...
- 动态规划——最长公共子序列&&最长公共子串
最长公共子序列(LCS)是一类典型的动归问题. 问题 给定两个序列(整数序列或者字符串)A和B,序列的子序列定义为从序列中按照索引单调增加的顺序取出若干个元素得到的新的序列,比如从序列A中取出 A ...
- 【ZH奶酪】如何用Python计算最长公共子序列和最长公共子串
1. 什么是最长公共子序列?什么是最长公共子串? 1.1. 最长公共子序列(Longest-Common-Subsequences,LCS) 最长公共子序列(Longest-Common-Subseq ...
随机推荐
- 梦想CAD控件网页版扩展数据
随着基于CAD的应用软件飞速发展,经常需要保存一些与图形可视性无关的数据,即非图形参数.例如在绘制化验样图中包含品位数据.MxCAD定义一类新的参数——实体扩展数据.扩展数据与实体的可视性无关,而是用 ...
- java学习_5_23
Collection接口中定义的方法如下,所有继承自Collection接口的接口(List,Set)的实现类均实现了这些方法. List容器是有序.可重复的,常用的实现类:ArrayList,Lin ...
- JAVA学习笔记16——线程的创建和启动
Java使用Thread类代表线程,所有的线程对象都必须是Thread类或其子类的实例.每个线程的作用是完成一定的任务,实际上就是执行一段程序流(一段顺序执行的代码).Java使用线程执行体来代表这段 ...
- JPA 与 JDBC 的区别和基本用法
JPA 概念 JPA(Java Persistence API)用于对象持久化的 API,是 Java EE 5.0 平台标准的 ORM 规范,使得应用程序以统一的方式访问持久层. 与 JDBC 的对 ...
- 数字图像处理技术在TWaver可视化中的应用
数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程.常用的图像处理方法有图像增强.复原.编码.压缩等,数 ...
- 洛谷——P2090 数字对
P2090 数字对 题目描述 对于一个数字对(a, b),我们可以通过一次操作将其变为新数字对(a+b, b)或(a, a+b). 给定一正整数n,问最少需要多少次操作可将数字对(1, 1)变为一个数 ...
- Gym - 101670B Pond Cascade(CTU Open Contest 2017 贪心,二分)
题目: The cascade of water slides has been installed in the park recently and it has to be tested. The ...
- Vue2.0如何实现父组件与子组件之间的事件发射与接收
关于vue2.0的事件发射和接收,大家都知道$dispatch和$broadcast在vue2.0已经被弃用了,取而代之的是更加方便快捷的方式,使用事件中心,组件通过它来互相通信,不管组件在哪一个层都 ...
- 戏说云计算之PaaS,IaaS,SaaS
最近我们聊到"CRM系统PAAS化",有些可能就不了解,到底什么是PAAS.云计算还有IaaS,SaaS概念,这三者之间有什么区别?今天智云通CRM系统小编用通俗易懂的例子跟大家分 ...
- Spring MVC学习总结(10)——Spring MVC使用Cors跨域
跨站 HTTP 请求(Cross-site HTTP request)是指发起请求的资源所在域不同于该请求所指向资源所在的域的 HTTP 请求.比如说,域名A(http://domaina.examp ...