uoj#34
模板
#include<bits/stdc++.h>
#define pi acos(-1)
using namespace std;
const int N = ;
int n, m, L, x;
int r[N];
complex<double> a[N], b[N];
void fft(complex<double> *a, int f)
{
for(int i = ; i < n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> t(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j < n; j += p)
{
complex<double> w(, );
for(int k = ; k < i; ++k, w *= t)
{
complex<double> x = a[j + k], y = w * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i) scanf("%d", &x), a[i] = x;
for(int i = ; i <= m; ++i) scanf("%d", &x), b[i] = x;
m = n + m; for(n = ; n <= m; n <<= ) ++L;
for(int i = ; i < n; ++i) r[i] = (r[i >> ] >> ) | ((i & ) << (L - ));
fft(a, ); fft(b, );
for(int i = ; i <= n; ++i) a[i] = a[i] * b[i];
fft(a, -);
for(int i = ; i <= m; ++i) printf("%d ", (int)(a[i].real() / n + 0.5));
return ;
}
uoj#34的更多相关文章
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- 【UOJ #34】多项式乘法
http://uoj.ac/problem/34 看了好长时间的FFT和NTT啊qwq在原根那块磨蹭了好久_(:з」∠)_ 首先设答案多项式的长度拓展到2的幂次后为n,我们只要求出一个g(不是原根)满 ...
- UOJ#34 FFT模板题
写完上一道题才意识到自己没有在博客里丢过FFT的模板-- 这道题就是裸的多项式乘法,可以FFT,可以NTT,也可以用Karasuba(好像有人这么写没有T),也可以各种其他分治乘法乱搞-- 所以我就直 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 【UOJ 34】 #34. 多项式乘法 (FFT)
[分析] 这个只是用来放模板..[其实我还没完全懂的.. 迭代 代替 递归: #include<cstdio> #include<cstdlib> #include<cs ...
- 【UOJ 34】 多项式乘法 (FFT)
[题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include< ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
随机推荐
- 10Java Server Pages 隐式对象
Java Server Pages 隐式对象 JSP隐式对象是Web容器加载的一组类的实例,它不像一般的Java对象那样用“new”去获取实例,而是可以直接在JSP页面使用的对象.JSP提供的隐式对象 ...
- 如何快速的vue init 属于自己的vue模板?
相信很多接触过vue的小伙伴非常熟悉了,我们在开启项目之前都需要vue init webpack xx来初始化自己的项目目录.但是在实际开发中我们往往会根据公司要求或者业务的需要会对目录进行局部的调整 ...
- 面试:B
协程 材质和贴图 任意模块的深入理解
- chrome浏览器安装网页测试插件postman的图文介绍
用户在开发或者调试网络程序或者是网页B/S模式的程序的时候是需要一些方法来跟踪网页请求的,用户可以使用一些网络的监视工具比如著名的Firebug等网页调试工具.今天给大家介绍的这款网页调试工具不仅可以 ...
- python文件读写及形式转化和CGI的简单应用
一丶python文件读写学习笔记 open() 将会返回一个 file 对象,基本语法格式如下: open(filename, mode) filename:包含了你要访问的文件名称的字符串值. mo ...
- 第七节:web爬虫之urllib(三)
第二个模块 error : 即异常处理模块,如果出现请求错误,我们可以捕获这些异常,然后进行重试或其他操作保证程序不会意外终止.
- Codeforces Educational Codeforces Round 17 Problem.A kth-divisor (暴力+stl)
You are given two integers n and k. Find k-th smallest divisor of n, or report that it doesn't exist ...
- json转换时区问题-------前端展示时间少8小时--解决方法
在application配置文件中加如下: spring.jackson.time-zone=GMT+8
- HBase单节点的安装与配置
HBase的安装配置1.下载:http://mirror.bit.edu.cn/apache/hbase/stable/ hbase-1.2.6-bin是直接编译好的,直接安装. hbase- ...
- E - 不容易系列之(4)――考新郎 错排数公式
国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的: 首先,给每位新娘打扮得几乎一模一 ...