题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629

扫除了一个知识盲点:约数和定理

约数和定理:

对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则由约数个数定理可知n的正约数有(a₁+1)(a₂+1)(a₃+1)…(ak+1)个,那么n的(a₁+1)(a₂+1)(a₃+1)…(ak+1)个正约数的和为f(n)=(p1^0+p1^1+p1^2+…p1^a1)(p2^0+p2^1+p2^2+…p2^a2)…(pk^0+pk^1+pk^2+…pk^ak)

所以就可以搜索了,可是我搜索好蒻啊不会...

参考这篇博客:https://blog.csdn.net/eolv99/article/details/39644419

于是抄写了一下,但感觉还是没有领悟设计 dfs 的方法...

另外,输出那里注释掉的写法为什么一直WA明明我觉得没什么问题啊...

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const maxn=1e5;
int s,pri[maxn+],ans[maxn+],cnt,num;
bool vis[maxn+];
void init()
{
vis[]=;
for(int i=;i<=maxn;i++)
{
if(!vis[i])pri[++cnt]=i;
for(int j=;j<=cnt&&i*pri[j]<=maxn;j++)
{
vis[i*pri[j]]=;
if(i%pri[j]==)break;
}
}
}
bool ispri(int x)
{
if(x<=maxn)return !vis[x];
// for(int i=2;i*i<=x;i++)
// if(x%i==0)return 0;
for(int i=;pri[i]*pri[i]<=x;i++)
if(x%pri[i]==)return ;
return ;
}
void dfs(int last,int nw,int tot)
{
if(tot==){ans[++num]=nw; return;}
if(tot->pri[last]&&ispri(tot-))//tot-1>pri[last],否则可能之后被枚举到
{
ans[++num]=nw*(tot-); //此处不return
}
for(int i=last+;pri[i]*pri[i]<=tot;i++)
for(int t=pri[i],ts=pri[i]+;ts<=tot;t*=pri[i],ts+=t)//+1是pri[i]^0
if(tot%ts==)//!
dfs(i,nw*t,tot/ts);
}
int main()
{
init();
while(~scanf("%d",&s))
{
num=;
dfs(,,s);
sort(ans+,ans+num+);
printf("%d\n",num);
// for(int i=1;i<num;i++)printf("%d ",ans[i]);
// printf("%d\n",ans[num]);
for(int i=;i<=num;i++)
{
printf("%d",ans[i]);
if(i==num)printf("\n"); else printf(" ");
}
}
return ;
}

bzoj3629 [JLOI2014]聪明的燕姿——DFS+约数和定理的更多相关文章

  1. bzoj千题计划297:bzoj3629: [JLOI2014]聪明的燕姿

    http://www.lydsy.com/JudgeOnline/problem.php?id=3629 约数和定理: 若n的标准分解式为 p1^k1 * p2^k2 …… 那么n的约数和= π (Σ ...

  2. bzoj3629[JLOI2014]聪明的燕姿

    http://www.lydsy.com/JudgeOnline/problem.php?id=3629 搜索. 我们知道: 如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{ ...

  3. bzoj 3629 [JLOI2014]聪明的燕姿(约数和,搜索)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3629 [题意] 给定S,找出所有约数和为S的数. [思路] 若n=p1^a1*p2^a ...

  4. 2018.09.11 bzoj3629: [JLOI2014]聪明的燕姿(搜索)

    传送门 一道神奇的搜索. 直接枚举每个质因数的次数,然后搜索就行了. 显然质因数k次数不超过logkn" role="presentation" style=" ...

  5. bzoj3629 / P4397 [JLOI2014]聪明的燕姿

    P4397 [JLOI2014]聪明的燕姿 根据唯一分解定理 $n=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 而$ ...

  6. BZOJ_3629_[JLOI2014]聪明的燕姿_dfs

    BZOJ_3629_[JLOI2014]聪明的燕姿_dfs Description 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 ...

  7. P4397 [JLOI2014]聪明的燕姿

    P4397 [JLOI2014]聪明的燕姿 题目背景 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排 ...

  8. 【LG4397】[JLOI2014]聪明的燕姿

    [LG4397][JLOI2014]聪明的燕姿 题面 洛谷 题解 考虑到约数和函数\(\sigma = \prod (1+p_i+...+p_i^{r_i})\),直接爆搜把所有数搜出来即可. 爆搜过 ...

  9. bzoj 3629 [JLOI2014]聪明的燕姿——约数和定理+dfs

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 如果要搜索,肯定得质因数分解吧:就应该朝这个方向想. **约数和定理: 对于任意一个大 ...

随机推荐

  1. JavaScipt30(第四个案例)(主要知识点:数组原型链上的一些方法)

    承接上文,下面是第四个案例 附上项目链接: https://github.com/wesbos/JavaScript30 const inventors = [ { first: 'Albert', ...

  2. vuex状态管理demo

    vuex状态管理主要包含四个概念  mapState,mapMutations,mapGetters,mapActions. 编写vuex文件夹下面的store.js import Vue from ...

  3. JAVA基础——集合浅析

    Java  集合      数组是一种很常见的数据结构,开始接触编程的时候多数程序都和数组相关.刚开始接触Java时也是一直使用数组写一些程序,后来越来越觉得数组这东西没法满足需求了,这时一位“前辈” ...

  4. IP地址、MAC地址、ARP地址解析协议

    互联网中一台主机要和另一台主机实现通信首先需要知道彼此在互联网中的位置,主机在互联网中的位置是通过ip地址标记的,当找到ip地址后,再通过端口号标识运行在主机中的进程从而实现通信. IP地址: IP地 ...

  5. 04StringBuffer相关知识、Arrays类、类型互换、正则、Date相关

    04StringBuffer相关知识.Arrays类.类型互换.正则.Date相关-2018.7.12 1.StringBuffer A:StringBuffer的构造方法: public Strin ...

  6. form表单传输多余参数

    1.使用post提交表单,同时在form的action属性后添加“?参数=参数值”,经验证,可行,但是在浏览器中看不到该参数在form参数中,如下图: 上图未出现courseId属性,form代码如下 ...

  7. 爬虫之Requests库

    官方文档:http://cn.python-requests.org/zh_CN/latest/ 一.引子 import requests resp = requests.get("http ...

  8. 浅谈微信小程序对于房地产行业的影响

    前几日,我们曾经整理过一篇文章是关于微信小程序对于在线旅游业的影响的一些反思(浅谈微信小程序对OTA在线旅游市场的影响),近日由于生活工作的需要走访了一些房地产的住宅商品房,突然想到微信小程序对于房地 ...

  9. python 读取指定文件信息并拼接

    python 读取指定文本并拼接成指定的格式 # -*- coding: utf-8 -*- import os def getHelloWorld(path, fileName): "&q ...

  10. JRebel 7.1.5 插件下载 安装 激活 结合 IntelliJ IDEA--自动编译进行热部署---

    Intellij IDEA 安装和配置jrebel进行项目的热部署 https://www.cnblogs.com/a8457013/p/7866625.html Intellij IDEA 使用jr ...