题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629

扫除了一个知识盲点:约数和定理

约数和定理:

对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则由约数个数定理可知n的正约数有(a₁+1)(a₂+1)(a₃+1)…(ak+1)个,那么n的(a₁+1)(a₂+1)(a₃+1)…(ak+1)个正约数的和为f(n)=(p1^0+p1^1+p1^2+…p1^a1)(p2^0+p2^1+p2^2+…p2^a2)…(pk^0+pk^1+pk^2+…pk^ak)

所以就可以搜索了,可是我搜索好蒻啊不会...

参考这篇博客:https://blog.csdn.net/eolv99/article/details/39644419

于是抄写了一下,但感觉还是没有领悟设计 dfs 的方法...

另外,输出那里注释掉的写法为什么一直WA明明我觉得没什么问题啊...

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const maxn=1e5;
int s,pri[maxn+],ans[maxn+],cnt,num;
bool vis[maxn+];
void init()
{
vis[]=;
for(int i=;i<=maxn;i++)
{
if(!vis[i])pri[++cnt]=i;
for(int j=;j<=cnt&&i*pri[j]<=maxn;j++)
{
vis[i*pri[j]]=;
if(i%pri[j]==)break;
}
}
}
bool ispri(int x)
{
if(x<=maxn)return !vis[x];
// for(int i=2;i*i<=x;i++)
// if(x%i==0)return 0;
for(int i=;pri[i]*pri[i]<=x;i++)
if(x%pri[i]==)return ;
return ;
}
void dfs(int last,int nw,int tot)
{
if(tot==){ans[++num]=nw; return;}
if(tot->pri[last]&&ispri(tot-))//tot-1>pri[last],否则可能之后被枚举到
{
ans[++num]=nw*(tot-); //此处不return
}
for(int i=last+;pri[i]*pri[i]<=tot;i++)
for(int t=pri[i],ts=pri[i]+;ts<=tot;t*=pri[i],ts+=t)//+1是pri[i]^0
if(tot%ts==)//!
dfs(i,nw*t,tot/ts);
}
int main()
{
init();
while(~scanf("%d",&s))
{
num=;
dfs(,,s);
sort(ans+,ans+num+);
printf("%d\n",num);
// for(int i=1;i<num;i++)printf("%d ",ans[i]);
// printf("%d\n",ans[num]);
for(int i=;i<=num;i++)
{
printf("%d",ans[i]);
if(i==num)printf("\n"); else printf(" ");
}
}
return ;
}

bzoj3629 [JLOI2014]聪明的燕姿——DFS+约数和定理的更多相关文章

  1. bzoj千题计划297:bzoj3629: [JLOI2014]聪明的燕姿

    http://www.lydsy.com/JudgeOnline/problem.php?id=3629 约数和定理: 若n的标准分解式为 p1^k1 * p2^k2 …… 那么n的约数和= π (Σ ...

  2. bzoj3629[JLOI2014]聪明的燕姿

    http://www.lydsy.com/JudgeOnline/problem.php?id=3629 搜索. 我们知道: 如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{ ...

  3. bzoj 3629 [JLOI2014]聪明的燕姿(约数和,搜索)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3629 [题意] 给定S,找出所有约数和为S的数. [思路] 若n=p1^a1*p2^a ...

  4. 2018.09.11 bzoj3629: [JLOI2014]聪明的燕姿(搜索)

    传送门 一道神奇的搜索. 直接枚举每个质因数的次数,然后搜索就行了. 显然质因数k次数不超过logkn" role="presentation" style=" ...

  5. bzoj3629 / P4397 [JLOI2014]聪明的燕姿

    P4397 [JLOI2014]聪明的燕姿 根据唯一分解定理 $n=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 而$ ...

  6. BZOJ_3629_[JLOI2014]聪明的燕姿_dfs

    BZOJ_3629_[JLOI2014]聪明的燕姿_dfs Description 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 ...

  7. P4397 [JLOI2014]聪明的燕姿

    P4397 [JLOI2014]聪明的燕姿 题目背景 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排 ...

  8. 【LG4397】[JLOI2014]聪明的燕姿

    [LG4397][JLOI2014]聪明的燕姿 题面 洛谷 题解 考虑到约数和函数\(\sigma = \prod (1+p_i+...+p_i^{r_i})\),直接爆搜把所有数搜出来即可. 爆搜过 ...

  9. bzoj 3629 [JLOI2014]聪明的燕姿——约数和定理+dfs

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3629 如果要搜索,肯定得质因数分解吧:就应该朝这个方向想. **约数和定理: 对于任意一个大 ...

随机推荐

  1. vue组件---边界处理情况

    (1)访问元素&组件 ①访问根实例 在每个 new Vue 实例的子组件中,其根实例可以通过 $root 属性进行访问.例如,在这个根实例中: // Vue 根实例 new Vue({ dat ...

  2. 网络编程 - socket实现多个连接处理

    #服务端import socket,osso_server=socket.socket()so_server.bind(("localhost",6969))so_server.l ...

  3. 浅析Oracle中的不等于号

    前几天碰到一个关于Oracle不等于的问题,最后搜索了一下,发现下面资料,拿来跟大家分享一下,需要的朋友可以参考下     关于Oracle中的不等于号: 在Oracle中, <> != ...

  4. attack on titans(动态规划递推,限制条件,至少转至多方法,进击的巨人)

    题目意思: 给n个士兵排队,每个士兵三种G.R.P可选,求至少有m个连续G士兵,最多有k个连续R士兵的排列的种数. 原题 Attack on Titans Time Limit: 2 Seconds ...

  5. Oracle创建用户、角色、授权、建表空间

    oracle数据库的权限系统分为系统权限与对象权限.系统权限( database system privilege )可以让用户执行特定的命令集.例如,create table权限允许用户创建表,gr ...

  6. Haoop Mapreduce 中的FileOutputFormat类

    FileOutputFormat类继承OutputFormat,需要提供所有基于文件的OutputFormat实现的公共功能,主要有以下两点: (1)实现checkOutputSpecs方法 chec ...

  7. Django DTL模板语法中的判断

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 勇者斗恶龙 UVA 11292

    Once upon a time, in the Kingdom of Loowater, a minor nuisance turned into a major problem. The shor ...

  9. 46. Spring Boot中使用AOP统一处理Web请求日志

    在之前一系列的文章中都是提供了全部的代码,在之后的文章中就提供核心的代码进行讲解.有什么问题大家可以给我留言或者加我QQ,进行咨询. AOP为Aspect Oriented Programming的缩 ...

  10. Mysql中Group By使用Having语句配合查询(where和having区别)

    注意 : having语句一般结合GROUP BY一起使用的..... Having短语与WHERE的区别!!! WHERE子句作用于基表或视图,从中选择满足条件的元组.HAVING短语作用于组,从中 ...