题目大意

设d(x)为x的约数个数,\(t\)组询问,给定\(n,m\)(\(t,m,n\leq5*10^4\)),求$ \sumn_{i=1}\summ_{j=1}d(i*j)$

题解

假设\(n\leq m\)

设\(i=p_1^{a_1}*p_2^{a_2}*...*p_k^{a_k},j=p_1^{b_1}*p_2^{b_2}*...*p_k^{b_k}\)

对于\(i*j\)的某个约数\(x\),设\(x=p_1^{c_1}*p_2^{c_2}*...*p_k^{c_k}\),那么可以用两个数\(e,f\)表示\(x\),当\(c_q\leq a_q\)时\(e\)的\(p_q\)的指数为\(c_q\),当\(c_q> a_q\)时\(f\)的\(p_q\)的指数为\(c_q-a_q\)

这样每个\(x\)都能对应到一对\((e,f)\)上,每对满足\(e|i,f|j,gcd(e,f)=1\)的\((e,f)\)也能对应到一个\(x\)上

所以就有\(d(i,j)=\sum_{e|i}\sum_{f|j}[gcd(e,f)=1]\)

原式=$ \sumn_{i=1}\summ_{j=1}\sum_{e|i}\sum_{f|j}[gcd(e,f)=1]\(
把枚举\)e,f\(放到前面,得原式=\)\sum_{e=1}{n}\sum_{f=1}{m}\lfloor\frac{n}{e}\rfloor\lfloor\frac{m}{f}\rfloor[gcd(e,f)=1]\(
=\)\sum_{e=1}{n}\sum_{f=1}{m}\lfloor\frac{n}{e}\rfloor\lfloor\frac{m}{f}\rfloor\sum_{i|e,i|f}\mu(i)\(
=\)\sum_{i=1}{n}\mu(i)\sum_{i|e}{n}{\lfloor\frac{n}{e}\rfloor}\sum_{i|f}^{m}{\lfloor\frac{m}{f}\rfloor}\(
=\)\sum_{i=1}{n}\mu(i)\sum_{e=1}{\lfloor\frac{n}{i}\rfloor}{\lfloor\frac{n}{ei}\rfloor}\sum_{f=1}^{\lfloor\frac{m}{i}\rfloor}{\lfloor\frac{m}{fi}\rfloor}\(
设\)g(x)=\sum_{i=1}^{x}{\lfloor\frac{x}{i}\rfloor}\(,预处理\)g(x)\(
则原式=\)\sum_{i=1}^{n}{\mu(i)g(n/i)g(m/i)}$

接下来整除分块就行了

代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define maxn 50010
#define lim 50000
#define LL long long
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(LL x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int n,m,t,p[maxn],no[maxn],cnt;
LL f[maxn],g[maxn],mu[maxn];
int main()
{
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
mu[1]=p[1]=no[1]=1;
rep(i,2,lim)
{
if(!no[i])p[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*p[j]<=lim;j++)
{
no[i*p[j]]=1;
if(i%p[j]==0){mu[i*p[j]]=0;break;}
else mu[i*p[j]]=-mu[i];
}
}
rep(i,1,lim)mu[i]+=mu[i-1];
rep(i,1,lim)
{
for(int l=1,r=0;l<=i;l=r+1)
{
r=i/(i/l);
f[i]+=(LL)(i/l)*(LL)(r-l+1);
}
}
t=read();
while(t--)
{
n=read(),m=read();LL ans=0;
if(n>m)swap(n,m);
for(int l=1,r=0;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans+=(mu[r]-mu[l-1])*f[n/l]*f[m/l];
}
write(ans);
}
return 0;
}

并不对劲的bzoj3994:loj2185:p3327[SDOI2015]约数个数和的更多相关文章

  1. P3327 [SDOI2015]约数个数和 莫比乌斯反演

    P3327 [SDOI2015]约数个数和 莫比乌斯反演 链接 luogu 思路 第一个式子我也不会,luogu有个证明,自己感悟吧. \[d(ij)=\sum\limits_{x|i}\sum\li ...

  2. 洛谷P3327 - [SDOI2015]约数个数和

    Portal Description 共\(T(T\leq5\times10^4)\)组数据.给出\(n,m(n,m\leq5\times10^4)\),求\[\sum_{i=1}^n\sum_{j= ...

  3. 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E

    https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...

  4. Luogu P3327 [SDOI2015]约数个数和

    又是恶心的莫比乌斯反演,蒟蒻我又是一脸懵逼的被CXR dalao狂虐. 题目要求\(ans=\sum_{i=1}^n \sum_{j=1}^m d(ij)\),其中\(d(ij)\)表示数\(x\)的 ...

  5. 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】

    题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...

  6. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    题目描述 设d(x)为x的约数个数,给定N.M,求 \sum^N_{i=1}\sum^M_{j=1}d(ij)∑i=1N​∑j=1M​d(ij) 输入输出格式 输入格式: 输入文件包含多组测试数据.第 ...

  7. luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

    题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\ ...

  8. 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

    传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...

  9. P3327 [SDOI2015]约数个数和

    思路 做这题先要知道一个性质, \[ d_{ij}=\sum_{x|i}\sum_{y|j}[(x,y)=1] \] 然后上莫比乌斯反演颓柿子就好了 \[ \begin{align}&\sum ...

随机推荐

  1. Codevs1062路由选择

    /* #include<iostream> #include<cstdio> #include<cstring> #define MAXN 301 using na ...

  2. Mysql数据库中CURRENT_TIMESTAMP和ON UPDATE CURRENT_TIMESTAMP区别

    如图所示,mysql数据库中,当字段类型为timestamp时,如果默认值取CURRENT_TIMESTAMP,则在insert一条记录时,end_time的值自动设置为系统当前时间,如果勾选了 ON ...

  3. 团购类网站倒计时的js实现

    一.如火如荼的团购网站 根据易观国际提供的统计数据,截至2010年6月,中国市场团购网站数量已经突破400家.国内团购潮从今年2月份开始出现,在4~6月出现高峰,尤其是今年5月,一些大的网站如爱帮网. ...

  4. 转:linux下共享库的注意点之-fpic

    转: http://www.cnblogs.com/leo0000/p/5691483.html linux下共享库的注意点之-fpic 在编译共享库必须加上-fpic.这是为什么呢? 首先看一个简单 ...

  5. 腾讯云图片鉴黄集成到C# SQL Server 怎么在分页获取数据的同时获取到总记录数 sqlserver 操作数据表语句模板 .NET MVC后台发送post请求 百度api查询多个地址的经纬度的问题 try{}里有一个 return 语句,那么紧跟在这个 try 后的 finally {}里的 code 会 不会被执行,什么时候被执行,在 return 前还是后? js获取某个日期

    腾讯云图片鉴黄集成到C#   官方文档:https://cloud.tencent.com/document/product/641/12422 请求官方API及签名的生成代码如下: public c ...

  6. Java基础:执行时异常和非执行时异常

    1.Java异常机制 Java把异常当做对象来处理,并定义一个基类java.lang.Throwable作为全部异常的超类. Java中的异常分为两大类:错误Error和异常Exception.Jav ...

  7. c++ string 之 find_first_not_of 源码

    一:实现之前先说一所find_first_not_of姊妹函数() (1)find_first_of(string &str, size_type index = 0):(find_first ...

  8. FIR300M刷openwrt

    淘宝看到一款FIR300M路由器,当时只要19.9元.图便宜就买了. Hardware Architecture: MIPS Vendor: MediaTek (Ralink) Bootloader: ...

  9. bash_profile打不开怎么办,用nano .bash_profile打开

    I’ve spent years curating a collection of Mac bash aliases and shortcuts to make my life easier. My ...

  10. Robot Framework自己主动化測试框架之我见

    一些自己主动化測试现状: 盲目的去做自己主动化,终于以失败告终. 觉得是能提高效率的事情.却推广不下去: 事实上上述问题产生的原因是: 自己主动化測试案例稳定性不高,可维护性比較差: 自己主动化測试工 ...