Judges' response

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 741    Accepted Submission(s): 429

Problem Description
  The contest is running and the judges is busy watching the progress of the contest. Suddenly, N - 1 (N <= 16) contestants hand up their hand at the same time. The judges should go to answer the contestants' question one by one. The judges already foresee that answering contest i's question would cost Ci minutes. In order to serve all the contestant, each judges is assigned to serve some subset of the contestants. As the judges have limited patience, each one of them can serve the contestants for no more than M minutes.
  You are asked to solve two problems:
  1. At least how many judges should be sent so that they can serve all the contestants? (Because the judges have limited patience, each one of them cannot serve too many contestants.)
  2. If there are infinite number of judges, how to assign the route for each judge so that the sum of their walking time is minimized? Each contestant i is reside in place (xi, yi), the judges are in place (x1, y1). Assuming the walking speed of the judge is 1.
 
Input
  There are several test cases, Each case begin with two integer N, M(with the meaning in the above context, 2 <= N <= 16, 0 <= M <= 100000).
  Then N lines follow and line i will contain two numbers x, y(0 <= x, y <= 1000), indicating the coordinate of place i.
  Then another N lines follow and line i will contain numbers Ci(0 <= Ci <= 1000), indicating the time to solve contestant i's question. C1 will 0 as place 1 is for the judges.
  
  The distance between place i and place j is defined as ceil(sqrt((xi - xj) ^ 2 + (yi - yj) ^ 2)). (ceil means rounding the number up, e.g. ceil(4.1) = 5)
 
Output
  For each case, output two numbers. The first is the minimum number of judges for question 1. The second is the minimum sum of walking time for question 2.
  If it's impossible to serve all the contestants, please output -1 -1 instead.
 
Sample Input
3 3
0 0
0 3
0 1
0
1
2

3 2
0 0
0 3
0 1
0
1
2

3 1
0 0
0 3
0 1
0
1
2
  
16 35
30 40
37 52
49 49
52 64
31 62
52 33
42 41
52 41
57 58
62 42
42 57
27 68
43 67
58 48
58 27
37 69
0
19
30
16
23
11
31
15
28
8
8
7
14
6
19
11

 
Sample Output
1 6 2 8 -1 -1 8 467

题意:

  第一问:n-1个人有问题需要裁判答复、每个人需要Ci的时间、每个裁判最多回答M时间的问题、问最小需要几个裁判。

  第二问:每个人有个位置、所有裁判都在一个位置、问所有裁判回答完问题并回到原点加起来走过的距离最小是多少。

  第一问和第二问是独立的,不一定在最少裁判的基础上来走。

解题:

  第一问就是一个带有状态的01背包。

  第二问是多旅行商问题(MTSP)。

AC代码:

/** @xigua */
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<cstring>
#include<deque>
#include<queue>
#include<set>
#include<string>
#include<map>
#include<climits>
#define inf LLONG_MAX
#define INF 9e7+5
#define PI acos(-1)
using namespace std;
typedef long long ll;
typedef double db;
const int maxn = 1e2 + 5;
const ll mod = 3e12 + 7;
const db eps = 1e-9;
int n, m, x[maxn], y[maxn], c[maxn];
int dis[maxn][maxn], dp[1<<16];
int sta[1<<16], len, best[1<<16], en[16][1<<16]; //en的第二维代表状态,比如en[j][i]代表在i状态下以j结尾的最小距离
bool xx[1<<16]; int get_dis(int x1, int x2, int y1, int y2) {
return ceil(sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2)));
} void init() {
memset(xx, 0, sizeof(xx));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) dis[i][j] = get_dis(x[i], x[j], y[i], y[j]);
for (int i = 0; i < (1<<n); i++) {
best[i] = INF;
dp[i] = INF;
for (int j = 0; j < n; j++)
en[j][i] = INF;
}
en[0][1] = best[0] = len = dp[0] = 0;
} bool ok(int x) {//判断当前状态能否由一个裁判回答完
int sum = 0;
for (int i = 0; i < n; i++) {
if (x&(1<<i))
sum += c[i];
}
return m >= sum;
} void get_sta() {
for (int i = 0; i < (1<<n); i++) {
if (ok(i))
sta[++len] = i, xx[i] = 1;
}
} int solve_bag() {
for (int i = 1; i <= len; i++) {
for (int j = (1<<n) - 1; j >= 0; j--) {
if (!(sta[i] & j)) {
dp[sta[i]|j] = min(dp[sta[i]|j], dp[j] + 1);
}
}
}
return dp[(1<<n)-1] == INF ? -1 : dp[(1<<n)-1];
} int solve_dd() {
for (int i = 0; i < (1<<n); i++) {
if (xx[i]) {
for (int j = 0; j < n; j++) {
if (i&(1<<j)) {
best[i] = min(best[i], en[j][i] + dis[j][0]);
for (int k = 0; k < n; k++) {
if (!(i&(1<<k))) {
en[k][i|(1<<k)] = min(en[k][i|(1<<k)], en[j][i] + dis[j][k]);
}
}
}
}
}
}
for (int i = 1; i < (1<<n); i++)
if (i&1)
for (int j = i&(i-1); j; j = i&(j-1)) //枚举比当前低的每个状态
best[i] = min(best[i], best[(i-j)|1] + best[j|1]);
return best[(1<<n)-1];
} void solve() {
while (cin >> n >> m) {
for (int i = 0; i < n; i++) cin >> x[i] >> y[i];
for (int i = 0; i < n; i++) cin >> c[i];
init();
get_sta();
int ans1= solve_bag();
if (ans1 == -1) cout << "-1 -1\n";
else cout << ans1 << ' ' << solve_dd() << endl;
}
} int main() {
//cin.sync_with_stdio(false);
//freopen("tt.txt", "r", stdin);
//freopen("hh.txt", "w", stdout);
int t = 1;
//cin >> t;
while (t--) {
solve();
} return 0;
}

  

HDU 4281 (状态压缩+背包+MTSP)的更多相关文章

  1. HDU 4739 Zhuge Liang's Mines (状态压缩+背包DP)

    题意 给定平面直角坐标系内的N(N <= 20)个点,每四个点构成一个正方形可以消去,问最多可以消去几个点. 思路 比赛的时候暴力dfs+O(n^4)枚举写过了--无意间看到有题解用状压DP(这 ...

  2. HDU 1074 (状态压缩DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:有N个作业(N<=15),每个作业需耗时,有一个截止期限.超期多少天就要扣多少 ...

  3. hdu 4739(状态压缩)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4739 思路:状态压缩. #include<iostream> #include<cs ...

  4. HDU 3341 状态压缩DP+AC自动机

    题目大意: 调整基因的顺序,希望使得最后得到的基因包含有最多的匹配串基因,使得所能达到的智商最高 这里很明显要用状态压缩当前AC自动机上点使用了基因的情况所能达到的最优状态 我最开始对于状态的保存是, ...

  5. hdu 2167(状态压缩基础题)

    题意:给你一个矩阵,让你在矩阵中找一些元素使它们加起来和最大,但是当你使用某一个元素时,那么这个元素周围的其它八个元素都不能取! 分析:这是一道比较基础的状态压缩题,也是我做的第三道状态压缩的题,但是 ...

  6. hdu 1565(状态压缩基础题)

    题意:容易理解. 分析:这是我做的状态压缩第二题,一开始超内存了,因为数组开大了,后来超时了,因为能够成立的状态就那么多,所以你应该先把它抽出来!!总的来说还是比较简单的!! 代码实现: #inclu ...

  7. HDU 2553 状态压缩

    N皇后问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. hdu 3006(状态压缩)

    The Number of set Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  9. hdu 2489(状态压缩+最小生成树)

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

随机推荐

  1. 安装YouCompleteMe时,编译依赖的python版本不对

    启动vim打开文件时出错: The ycmd server SHUT DOWN (restart with ':YcmRestartServer'). YCM core library compile ...

  2. .NETFramework:Cache

    ylbtech-.NETFramework:Cache 1.返回顶部 1. #region 程序集 System.Web, Version=4.0.0.0, Culture=neutral, Publ ...

  3. bzoj3998

    后缀自动机+dp 想了挺长时间 后缀自动机的状态图是一个dag,从root走到一个点的路径数代表了这个状态包含的子串,我们先预处理出来每个节点向后走能够形成多少子串,注意这里不是直接在parent树上 ...

  4. Python 函数的参数传递

    C/C++中,传递参数的类型是可以指定的.一般来说,传递参数可以分为两种:值传递和引用传递.对于值传递,参数传递的过程中进行了复制操作,也就是说,在函数中对参数的任何改动都不会影响到传入的变量:对于引 ...

  5. 041--Jquery

    一.Jquery对象 jQuery 对象就是通过jQuery包装DOM对象后产生的对象.jQuery 对象是 jQuery 独有的. 如果一个对象是 jQuery 对象, 那么它就可以使用 jQuer ...

  6. js遍历ajax回调函数返回值中的object对象

    function printObject(obj) {      //obj = {"cid":"C0","ctext":"区县& ...

  7. Java简单高精度合集

    第一个Java的算法程序.记得可以使用Alt+'/'自动补全sysout和main之类的. BigInteger在java.math.BigInteger中. import java.math.Big ...

  8. locate的基本用法

    一.工作原理 1. locate是通过读取一个或多个由updatedb命令生成的数据库来查找文件的,而updatedb由计划任务程序cron每天运行来更新缺省的数据库(/var/lib/mlocate ...

  9. 笔记:重新认识CSS3

    1.CSS3边框 border-radius box-shadow border-image 2.CSS3背景 background-image background-size background- ...

  10. 【UVA - 540】Team Queue (map,队列)

    Team Queue Descriptions: Queues and Priority Queues are data structures which are known to most comp ...