题目链接:https://vjudge.net/problem/POJ-2955

Brackets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9630   Accepted: 5131

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

题解:

求最多有多少对括号匹配。典型的区间dp。

方法一:

1.如果区间[l,r]的两端匹配,则左右各缩进一格,从而转化成处理[l+1, r-1]的区间。

2.不管是否符合条件1,都尝试去枚举分割点,使得整个区间分成两半,这样就可以把大区间的处理转化成两个小区间的处理。

记忆化搜索:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; char s[MAXN];
int dp[MAXN][MAXN]; int dfs(int l, int r)
{
if(r<=l) return ;
if(dp[l][r]!=-) return dp[l][r]; if( (s[l]=='('&&s[r]==')')||(s[l]=='['&&s[r]==']') ) //如果两端匹配,则可以缩减范围
dp[l][r] = dfs(l+, r-) + ;
for(int k = l; k<r; k++) //枚举分割点,分成两半
dp[l][r] = max(dp[l][r], dfs(l, k)+dfs(k+, r)); return dp[l][r];
} int main()
{
while(scanf("%s", s+) && strcmp(s+, "end"))
{
memset(dp, -, sizeof(dp));
cout<< dfs(, strlen(s+))* <<endl;
}
}

递推:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; char s[MAXN];
int dp[MAXN][MAXN]; int main()
{
while(scanf("%s", s+) && strcmp(s+, "end"))
{
memset(dp, , sizeof(dp));
int n = strlen(s+);
for(int len = ; len<=n; len++)
{
for(int l = ; l<=n-len+; l++)
{
int r = l+len-;
if( (s[l]=='('&&s[r]==')') || (s[l]=='['&&s[r]==']') )
dp[l][r] = dp[l+][r-] + ;
for(int k = l; k<r; k++)
dp[l][r] = max(dp[l][r], dp[l][k]+dp[k+][r]);
}
}
printf("%d\n", dp[][n]*);
}
return ;
}

方法二:

1.可知一个符号最多只能与一个符号匹配,那么对于当前的符号,我们就枚举其他符号与其匹配(不管是能匹配成功)。

2.假设区间为 [l, r],为l枚举匹配符号,当枚举到k位置时,就把区间分割成了两部分:[l+1, k-1] 和 [k+1, r] 。从而就把大区间的求解转化为小区间的求解。

记忆化搜索:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; char s[MAXN];
int dp[MAXN][MAXN]; int dfs(int l, int r)
{
if(r<=l) return ;
if(dp[l][r]!=-) return dp[l][r]; dp[l][r] = dfs(l+, r);
for(int k = l+; k<=r; k++)
{
int ismatch = (s[l]=='('&&s[k]==')')||(s[l]=='['&&s[k]==']');
int tmp = dfs(l+, k-)+dfs(k+, r)+ismatch;
dp[l][r] = max(dp[l][r], tmp);
}
return dp[l][r];
} int main()
{
while(scanf("%s", s+) && strcmp(s+, "end"))
{
memset(dp, -, sizeof(dp));
cout<< dfs(, strlen(s+))* <<endl;
}
}

递推:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = +; char s[MAXN];
int dp[MAXN][MAXN]; int main()
{
while(scanf("%s", s+) && strcmp(s+, "end"))
{
memset(dp, , sizeof(dp));
int n = strlen(s+);
for(int len = ; len<=n; len++)
{
for(int l = ; l<=n-len+; l++)
{
int r = l+len-;
dp[l][r] = dp[l+][r];
for(int k = l+; k<=r; k++)
{
int ismatch = (s[l]=='('&&s[k]==')')||(s[l]=='['&&s[k]==']');
dp[l][r] = max(dp[l][r], dp[l+][k-]+dp[k+][r]+ismatch);
}
}
}
printf("%d\n", dp[][n]*);
}
return ;
}

POJ2955 Brackets —— 区间DP的更多相关文章

  1. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  2. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  3. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  4. POJ2955:Brackets(区间DP)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  5. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  6. Brackets(区间dp)

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3624   Accepted: 1879 Descript ...

  7. poj 2955"Brackets"(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 给你一个只由 '(' , ')' , '[' , ']' 组成的字符串s[ ], ...

  8. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  9. Code Forces 149DColoring Brackets(区间DP)

     Coloring Brackets time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

随机推荐

  1. spring经典配置

    1.annotation方式 <?xml version="1.0" encoding="UTF-8"?><beans xmlns=" ...

  2. robotframework使用

    下面是ui自动化的使用,关于接口自动化的使用参照此博客:http://blog.csdn.net/wuxiaobingandbob/article/details/50747125 1.使用pytho ...

  3. 窗口(codevs 4373)

    题目描述 Description 给你一个长度为N的数组,一个长为K的滑动的窗体从最左移至最右端,你只能见到窗口的K个数,每次窗体向右移动一位,如下表: Window position Min val ...

  4. CPU 和内存虚拟化原理

    前面我们成功地把 KVM 跑起来了,有了些感性认识,这个对于初学者非常重要.不过还不够,我们多少得了解一些 KVM 的实现机制,这对以后的工作会有帮助. CPU 虚拟化 KVM 的虚拟化是需要 CPU ...

  5. php——验证身份证是否合法的函数

    function is_idcard( $id ){ $id = strtoupper($id); $regx = "/(^\d{15}$)|(^\d{17}([0-9]|X)$)/&quo ...

  6. golang导出Excel表格

    设置样式: package main import ( "github.com/tealeg/xlsx" "fmt" ) func main() { var f ...

  7. centos tomcat 关于日志

    一.实时查看tomcat的日志 1.先切换到tomcat5/logs 2.tail -f catalina.out 3.这样运行时就可以实时查看运行日志了 例如: cd /tomcat7/logs t ...

  8. Codeforces 518 D Ilya and Escalator

    Discription Ilya got tired of sports programming, left university and got a job in the subway. He wa ...

  9. 电音中DJ/Producer/MC/EDM/Remix/Mix的名词解释(转)

    DJ DJ是Disc Jockey的缩写,是电音圈子里的一种热门职业,一般大家在夜店或者酒吧看到的站在台上甩着膀子拧着按钮或者使劲儿搓碟的就是DJ啦. DJ的主要工作一般就是在现场用打碟机和混音台把许 ...

  10. sql 添加自定义排序

    Mysql : SELECT (@i:=@i+1) AS ind ,字段 FROM 表名 别名, (SELECT @i:=0) t WHERE `IsDeleted` = 0; Oracle: 本就有 ...