题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4806

看到这题首先会想到状压什么乱七八糟的,然而很难做;

其实,因为求的是方案数,所以并不需要关注炮摆放的位置,而只需要关注数量;

f[i][j][k] 表示第 i 行及以前共有 j 个有 0 炮的列和 k 个有 1 炮的列,就可以转移了。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int const mod=,maxn=;
ll n,m,f[maxn][maxn][maxn],ans;
ll C(ll x){return ((x-)*x/)%mod;}//不是(x+1) !!
int main()
{
scanf("%d%d",&n,&m);
f[][m][]=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)//
for(int k=;k<=m-j;k++)//
{
(f[i][j][k]+=f[i-][j][k])%=mod;//放0个
if(k>=&&j<m)(f[i][j][k]+=f[i-][j+][k-]*(j+))%=mod;//0 -> 1 //别写成 if(k&&j<m) !!
if(k<m)(f[i][j][k]+=f[i-][j][k+]*(k+))%=mod;//1 -> 2
if(j<m)(f[i][j][k]+=f[i-][j+][k]*(j+)*k)%=mod;//0 1 -> 1 2
if(k->=&&j+<=m)(f[i][j][k]+=f[i-][j+][k-]*C(j+))%=mod;//0 0 -> 1 1
if(k+<=m)(f[i][j][k]+=f[i-][j][k+]*C(k+))%=mod;//1 1 -> 2 2
}
for(int j=;j<=m;j++)
for(int k=;k<=m;k++)
(ans+=f[n][j][k])%=mod;
printf("%lld",ans);
return ;
}

bzoj4806 炮——DP的更多相关文章

  1. BZOJ4806(SummerTrainingDay03-K dp)

    炮 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 464  Solved: 243[Submit][Status][Discuss] Descript ...

  2. bzoj4806 炮

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4806 这种题应该想状压的. 于是发现压不下,结合每一行每一列最多放两个炮想到记一下放炮的列就 ...

  3. 【bzoj4806~bzoj4808】炮车马后——象棋四连击

    bzoj4806——炮 题目传送门:bzoj4806 这种题一看就是dp...我们可以设$ f[i][j][k] $表示处理到第$ i $行,有$ j $列没放炮,$ k $列只放了一个炮.接着分情况 ...

  4. 炮(棋盘DP)

    一直以为自己写的就是状态压缩,结果写完才知道是个棋盘dp 首先看一下题目 嗯,象棋 ,还是只有炮的象棋 对于方案数有几种,我第一个考虑是dfs,但是超时稳稳的,所以果断放弃 然后记得以前有过和这个题差 ...

  5. 2018.07.22哨戒炮 II(树形dp)

    哨戒炮 II 描述 你的防线成功升级,从原来的一根线变成了一棵树.这棵树有 N 个炮台,炮台与炮台之间 有 N-1 条隧道.你要选择一些炮台安装哨戒炮.在第 i 个炮台上安装哨戒炮得到的防御力为 vi ...

  6. Bzoj 4806 炮 (dp)

    题目描述 众所周知,双炮叠叠将是中国象棋中很厉害的一招必杀技.炮吃子时必须隔一个棋子跳吃,即俗称"炮打隔子".  炮跟炮显然不能在一起打起来,于是rly一天借来了许多许多的炮在棋盘 ...

  7. Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP

    传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...

  8. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  9. BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)

    注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...

随机推荐

  1. JPos学习

    基于JPos的消息交换系统 消息交换系统需求解读 消息交换系统不不是一个具体的业务系统,而是业务系统的运转的基础框架: 他的运转是体现在报文交换上的: 要定义一个可被不同业务系统使用的报文规范: 报文 ...

  2. 获得HttpServletRequest 和HttpSession对象

    package org.jeecgframework.core.util; import java.util.HashMap; import java.util.Map; import javax.s ...

  3. C++动态特性和C++对象模型——《高质量程序设计12章》

    1.动态特性 静态特性和动态特性,编译时和运行时 虚函数 (1)虚函数的叫覆盖,虚函数不是实现多态的唯一手段(其他语言也可能采用别的方法). 抽象基类: (1)如果将基类的虚函数声明为纯虚函数,则基类 ...

  4. Android资源目录结构

    资源目录结构 res为资源目录,主要以xml语法编写静态的资源. 资源的命名标准:小写字母和数字,且以小写字母开头. 资源的生成,为了和java语法沟通,资源文件会自动的生成在[gen]目录的R.ja ...

  5. 通过分析system_call中断处理过程来深入理解系统调用

    通过分析system_call中断处理过程来深入理解系统调用 前言说明 本篇为网易云课堂Linux内核分析课程的第五周作业,上一次作业中我以2个系统调用(getpid, open)作为分析实例来分析系 ...

  6. windows7 下安装使用memcached

    Memcached 安装使用 本地环境:Windows7 64位web环境:wamp集成环境,php版本:PHP Version 7.1.17 学习参考网站: RUNOOB.COM官网  http:/ ...

  7. XCode 或者ITune 添加账号时,提示:This action could not be completed. 或者 Access Privileges

    当遇到This action could not be completed 或者 You do not have enough access privileges for this operation ...

  8. 10-JS的函数学习

    <html> <head> <title>js的函数学习</title> <meta charset="UTF-8"/> ...

  9. 【nginx】【转】Nginx核心进程模型

    一.Nginx整体架构 正常执行中的nginx会有多个进程,最基本的有master process(监控进程,也叫做主进程)和woker process(工作进程),还可能有cache相关进程.   ...

  10. redis connetced refused remote

    239down vote I've been stuck with the same issue, and the preceding answer did not help me (albeit w ...