题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4806

看到这题首先会想到状压什么乱七八糟的,然而很难做;

其实,因为求的是方案数,所以并不需要关注炮摆放的位置,而只需要关注数量;

f[i][j][k] 表示第 i 行及以前共有 j 个有 0 炮的列和 k 个有 1 炮的列,就可以转移了。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int const mod=,maxn=;
ll n,m,f[maxn][maxn][maxn],ans;
ll C(ll x){return ((x-)*x/)%mod;}//不是(x+1) !!
int main()
{
scanf("%d%d",&n,&m);
f[][m][]=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)//
for(int k=;k<=m-j;k++)//
{
(f[i][j][k]+=f[i-][j][k])%=mod;//放0个
if(k>=&&j<m)(f[i][j][k]+=f[i-][j+][k-]*(j+))%=mod;//0 -> 1 //别写成 if(k&&j<m) !!
if(k<m)(f[i][j][k]+=f[i-][j][k+]*(k+))%=mod;//1 -> 2
if(j<m)(f[i][j][k]+=f[i-][j+][k]*(j+)*k)%=mod;//0 1 -> 1 2
if(k->=&&j+<=m)(f[i][j][k]+=f[i-][j+][k-]*C(j+))%=mod;//0 0 -> 1 1
if(k+<=m)(f[i][j][k]+=f[i-][j][k+]*C(k+))%=mod;//1 1 -> 2 2
}
for(int j=;j<=m;j++)
for(int k=;k<=m;k++)
(ans+=f[n][j][k])%=mod;
printf("%lld",ans);
return ;
}

bzoj4806 炮——DP的更多相关文章

  1. BZOJ4806(SummerTrainingDay03-K dp)

    炮 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 464  Solved: 243[Submit][Status][Discuss] Descript ...

  2. bzoj4806 炮

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4806 这种题应该想状压的. 于是发现压不下,结合每一行每一列最多放两个炮想到记一下放炮的列就 ...

  3. 【bzoj4806~bzoj4808】炮车马后——象棋四连击

    bzoj4806——炮 题目传送门:bzoj4806 这种题一看就是dp...我们可以设$ f[i][j][k] $表示处理到第$ i $行,有$ j $列没放炮,$ k $列只放了一个炮.接着分情况 ...

  4. 炮(棋盘DP)

    一直以为自己写的就是状态压缩,结果写完才知道是个棋盘dp 首先看一下题目 嗯,象棋 ,还是只有炮的象棋 对于方案数有几种,我第一个考虑是dfs,但是超时稳稳的,所以果断放弃 然后记得以前有过和这个题差 ...

  5. 2018.07.22哨戒炮 II(树形dp)

    哨戒炮 II 描述 你的防线成功升级,从原来的一根线变成了一棵树.这棵树有 N 个炮台,炮台与炮台之间 有 N-1 条隧道.你要选择一些炮台安装哨戒炮.在第 i 个炮台上安装哨戒炮得到的防御力为 vi ...

  6. Bzoj 4806 炮 (dp)

    题目描述 众所周知,双炮叠叠将是中国象棋中很厉害的一招必杀技.炮吃子时必须隔一个棋子跳吃,即俗称"炮打隔子".  炮跟炮显然不能在一起打起来,于是rly一天借来了许多许多的炮在棋盘 ...

  7. Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP

    传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...

  8. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  9. BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)

    注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...

随机推荐

  1. ssh 监听多个端口

    修改sshd的配置文件 默认位置:/etc/ssh/sshd_config 注释掉 Port 这行   然后添加 ListenAddress 行 e.g:  ListenAddress 192.168 ...

  2. CentOS7中,vnc分辨率设置。

    使用geometry参数进行调整 例如,我们需要将分辨率调整到800x600 [root@secdb ~]# vncserver -geometry 800x600 New 'secdb:5 (roo ...

  3. 【dp】E. Selling Souvenirs

    http://codeforces.com/contest/808/problem/E 题意:给定n个重量为可能1,2,3的纪念品和各自的价值,问在背包总重量不超过m的条件下总价值最大为多少. 其中1 ...

  4. linux 常见名词及命令(二)

    pwd 用于显示当前的工作目录. cd 用于切换工作路径 cd - 切换到上一次的目录 cd ~ 切换到家目录 cd ~username 切换到其他用户的家目录 cd .. 切换到上级目录 ls 用于 ...

  5. ThinkPHP5 的入门学习

    与Tp3.2相比,有一下的不同: (1)目录名称的改变: tp3.2的目录命名首字母皆为大写,例如:Application.Public.Controller.Model.View.ThinkPHP. ...

  6. Spring中使用存储过程

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/jdbc-framework-overview/sql-stored-procedure-in-sp ...

  7. Go -- 多个go文件包名都是main

    用go run *.go 或 go run one.go two.go main.go

  8. iOS设计模式 - (1)概述

    近期可自由安排的时间比較多, iOS应用方面, 没什么好点子, 就先放下, 不写了.花点时间学学设计模式. 之后将会写一系列博文, 记录设计模式学习过程. 当然, 由于我自己是搞iOS的, 所以之后设 ...

  9. [RxJS] Implement RxJS `switchMap` by Canceling Inner Subscriptions as Values are Passed Through

    switchMap is mergeMap that checks for an "inner" subscription. If the "inner" su ...

  10. Android时时监測手机的旋转角度 依据旋转角度确定在什么角度载入竖屏布局 在什么时候载入横屏布局

    一.场景描写叙述: 最近开发中遇到个问题,就是我们在做横竖屏切换的功能时.横竖屏布局是操作系统去感知的,作为开发员没法确定Activity在什么时候载入横屏布局,在什么时候载入竖屏布局.因此为了找到载 ...