Derivative and Slope

Quick review: a \(derivative\) gives us the \(\text{slope of a function}\) at \(any\ point\).

These derivative rules can help us:

  • The derivative of \(a\ constant\) is 0
  • The derivative of \(a x\) is \(a\) (example: the derivative of \(2x\) is \(2\))
  • The derivative of \(x^n\) is \(nx^{n-1}\) (example: \(\text{the derivative of }x^3\text{ is }3x^2\))
  • We will use the little mark \(’\) to denote "\(\text{derivative of}\)" (example: \(f'(x)\) denote the \(\text{derivative of } f(x)\)).

\(Real\ Space\) and \(Taylor\ Series\):

  • \(\large \text{First define } f^{(0)} (x) = f(x) \text{ and } 0! = 1\) :
  • Formula:

    \(\large \begin{array}{rll} \\
    f(x) &=& \sum_{n=0}^{\infty}{\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n} \\
    &=& f(x_0) +\sum_{n=1}^{\infty}{\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n} \\
    \end{array}\)
  • Examples,\(Natural\ Exponential\ Functions\) and \(Trigonometrical\ Functions\):

    \(\large \begin{array}{rll} \\
    e^x &=& \sum_{n=0}^{\infty} {\frac{x^n}{n!}} \\
    &=& 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots + \frac{x^n}{n!} \\
    \cos (x) &=& \sum_{n=0}^{\infty} {\frac{(-1)^{(n)}}{(2n)!} {x^{(2n)}} } \\
    &=& 1 + \frac{(-1)x^{2}}{2!} + \frac{(+1)x^{4}}{4!} + \cdots + \frac{(-1)^{(n)}}{(2n)!} {x^{(2n)}} \\
    \sin (x) &=& \sum_{n=0}^{\infty} {\frac{(-1)^{n}}{(2n+1)!} {x^{(2n+1)}} } \\
    &=& x + \frac{(-1)x^{3}}{3!} + \frac{(+1)x^{5}}{5!} + \cdots + \frac{(-1)^{n}}{(2n+1)!} {x^{(2n+1)}} \\
    \end{array}\)

\(Complex\ Space\) and \(Euler's\ Equation\):

Let $\large \ x=i \cdot y $ and \(\large i^2=-1\):

\(\large \begin{array}{rll} \\
e^x = e^{i \cdot y} &=& \sum_{n=0}^{\infty} {\frac{(i \cdot y)^n}{n!}} \\
&=& 1 + i \cdot y + \frac{-1 \cdot y^2}{2!} + i \cdot \frac{-1 \cdot y^3}{3!} + \frac{+1 \cdot y^4}{4!} + i \cdot \frac{+1 \cdot y^5}{5!} + \cdots + i^{n} \cdot \frac{(y^n}{n!} \\
&=& (1 + \frac{-1 \cdot y^2}{2!} + \frac{+1 \cdot y^4}{4!} + \cdots ) + i ( y + \frac{-1 \cdot y^3}{3!} + \frac{+1 \cdot y^5}{5!} + \cdots ) \\
&=& \cos y + i \sin y \\
\therefore e^{ix} &=& \cos x + i \sin x\ , \text{ Euler's Equation} \\
\end{array}\)

So $\large the\ Taylor's\ Equation,\ Euler's\ Equation \text{ are unified in }Complex\ Space \text{ with } the\ Trigonometry\ Functions, the\ Natural\ Number \text{ and } Exponential\ Functions $

SciTech-Mathmatics-Real Space + Taylor Equation + Exponential Functions+Trigonometrical Functions + Complex Space + Euler's Equation的更多相关文章

  1. The space of such functions is known as a reproducing kernel Hilbert space.

    Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...

  2. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  3. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  4. 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)

    我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...

  5. 5.24 Declaring Attributes of Functions【转】

    转自:https://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Function-Attributes.html 5.24 Declaring Attributes o ...

  6. Part 11 string functions in sql server

    Built in string functions in sql server 2008 LEFT, RIGHT, CHARINDEX and SUBSTRING functions in sql s ...

  7. [HIve - LanguageManual] Hive Operators and User-Defined Functions (UDFs)

    Hive Operators and User-Defined Functions (UDFs) Hive Operators and User-Defined Functions (UDFs) Bu ...

  8. 理解滑动平均(exponential moving average)

    1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以 ...

  9. Cauchy sequence Hilbert space 希尔波特空间的柯西序列

    http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space  with an inner prod ...

  10. System and method for critical address space protection in a hypervisor environment

    A system and method in one embodiment includes modules for detecting an access attempt to a critical ...

随机推荐

  1. .NET Core短信验证(分布式session)

    一.手机短信验证码登录过程 1.构造手机验证码,需要生成一个6位的随机数字串: 2.找短信平台获取使用接口向短信平台发送手机号和验证码,然后短信平台再把验证码发送到制定手机号上 3.将手机号验证码.操 ...

  2. SpringBoot——yaml配置文件

    yaml简介 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言).在开发的这种语言时,YAML 的意思其实是:"Ye ...

  3. P2150 [NOI2015] 寿司晚宴 题解

    P2150 [NOI2015] 寿司晚宴 刚开始看错题了,推了一个与原题类似的 DP 方程,然后不会优化,笑了. 思路 首先看到 \(n\) 很小,然后质因子个数就更少了. 因此第一反应是将所有的质因 ...

  4. 京东首页html+css1.0

    小菜鸟的学习记录,还望各位猿兄不吝赐教 文章目录 效果图 源码 HTML文件 css文件 效果图 源码 HTML文件 <!DOCTYPE html> <html> <he ...

  5. 面试官说又逮到一个不会用Git的

    这里这写简要,要看具体的步骤及解释清移步:https://www.bilibili.com/read/cv10510952 如果是自己创建仓库写代码上传(demo是自己仓库的自定义名字): git i ...

  6. docker-compose 启动容器

    docker-compose 是什么 docker-compose 是一个用来把 docker 自动化的东西.有了 docker-compose 你可以把所有繁复的 docker 操作全都一条命令,自 ...

  7. 重磅开源 基于AI大语言模型的AI 助手全套开源解决方案 AI开源平台

    介绍 GeekAI 基于AI大语言模型的AI 助手全套开源解决方案,自带运营管理后台,开箱即用.集成了 OpenAI, Claude, 通义千问,Kimi,DeepSeek等多个平台的大语言模型. 基 ...

  8. JAVA JUC干货之线程池实现原理和源码详解(上)

    目录 综述 七个核心参数 线程工厂 拒绝策略 AbortPolicy CallerRunsPolicy DiscardOldestPolicy DiscardPolicy 自定义拒绝策略 监控线程池运 ...

  9. python爬虫学习——bs4

    bs4 将一个复杂的html文档转化为一个复杂的树形结构,每个节点都是python对象,所有对象可以分为四种:Tag.NavigableString.BeautifulSoup.Comment fro ...

  10. golang中写个字符串遍历谁不会?且看我如何提升 50 倍

    作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu Github 公众号:一本正经的瞎扯 引子 VictoriaMetrics (Github: h ...