Derivative and Slope

Quick review: a \(derivative\) gives us the \(\text{slope of a function}\) at \(any\ point\).

These derivative rules can help us:

  • The derivative of \(a\ constant\) is 0
  • The derivative of \(a x\) is \(a\) (example: the derivative of \(2x\) is \(2\))
  • The derivative of \(x^n\) is \(nx^{n-1}\) (example: \(\text{the derivative of }x^3\text{ is }3x^2\))
  • We will use the little mark \(’\) to denote "\(\text{derivative of}\)" (example: \(f'(x)\) denote the \(\text{derivative of } f(x)\)).

\(Real\ Space\) and \(Taylor\ Series\):

  • \(\large \text{First define } f^{(0)} (x) = f(x) \text{ and } 0! = 1\) :
  • Formula:

    \(\large \begin{array}{rll} \\
    f(x) &=& \sum_{n=0}^{\infty}{\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n} \\
    &=& f(x_0) +\sum_{n=1}^{\infty}{\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n} \\
    \end{array}\)
  • Examples,\(Natural\ Exponential\ Functions\) and \(Trigonometrical\ Functions\):

    \(\large \begin{array}{rll} \\
    e^x &=& \sum_{n=0}^{\infty} {\frac{x^n}{n!}} \\
    &=& 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots + \frac{x^n}{n!} \\
    \cos (x) &=& \sum_{n=0}^{\infty} {\frac{(-1)^{(n)}}{(2n)!} {x^{(2n)}} } \\
    &=& 1 + \frac{(-1)x^{2}}{2!} + \frac{(+1)x^{4}}{4!} + \cdots + \frac{(-1)^{(n)}}{(2n)!} {x^{(2n)}} \\
    \sin (x) &=& \sum_{n=0}^{\infty} {\frac{(-1)^{n}}{(2n+1)!} {x^{(2n+1)}} } \\
    &=& x + \frac{(-1)x^{3}}{3!} + \frac{(+1)x^{5}}{5!} + \cdots + \frac{(-1)^{n}}{(2n+1)!} {x^{(2n+1)}} \\
    \end{array}\)

\(Complex\ Space\) and \(Euler's\ Equation\):

Let $\large \ x=i \cdot y $ and \(\large i^2=-1\):

\(\large \begin{array}{rll} \\
e^x = e^{i \cdot y} &=& \sum_{n=0}^{\infty} {\frac{(i \cdot y)^n}{n!}} \\
&=& 1 + i \cdot y + \frac{-1 \cdot y^2}{2!} + i \cdot \frac{-1 \cdot y^3}{3!} + \frac{+1 \cdot y^4}{4!} + i \cdot \frac{+1 \cdot y^5}{5!} + \cdots + i^{n} \cdot \frac{(y^n}{n!} \\
&=& (1 + \frac{-1 \cdot y^2}{2!} + \frac{+1 \cdot y^4}{4!} + \cdots ) + i ( y + \frac{-1 \cdot y^3}{3!} + \frac{+1 \cdot y^5}{5!} + \cdots ) \\
&=& \cos y + i \sin y \\
\therefore e^{ix} &=& \cos x + i \sin x\ , \text{ Euler's Equation} \\
\end{array}\)

So $\large the\ Taylor's\ Equation,\ Euler's\ Equation \text{ are unified in }Complex\ Space \text{ with } the\ Trigonometry\ Functions, the\ Natural\ Number \text{ and } Exponential\ Functions $

SciTech-Mathmatics-Real Space + Taylor Equation + Exponential Functions+Trigonometrical Functions + Complex Space + Euler's Equation的更多相关文章

  1. The space of such functions is known as a reproducing kernel Hilbert space.

    Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...

  2. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  3. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  4. 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)

    我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...

  5. 5.24 Declaring Attributes of Functions【转】

    转自:https://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Function-Attributes.html 5.24 Declaring Attributes o ...

  6. Part 11 string functions in sql server

    Built in string functions in sql server 2008 LEFT, RIGHT, CHARINDEX and SUBSTRING functions in sql s ...

  7. [HIve - LanguageManual] Hive Operators and User-Defined Functions (UDFs)

    Hive Operators and User-Defined Functions (UDFs) Hive Operators and User-Defined Functions (UDFs) Bu ...

  8. 理解滑动平均(exponential moving average)

    1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以 ...

  9. Cauchy sequence Hilbert space 希尔波特空间的柯西序列

    http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space  with an inner prod ...

  10. System and method for critical address space protection in a hypervisor environment

    A system and method in one embodiment includes modules for detecting an access attempt to a critical ...

随机推荐

  1. Git提交修正的核心技巧:git commit --amend 的专业实践与深度解析

    结论先行 git commit --amend 是用于 修正最近一次提交 的高效工具,可修改提交信息.追加遗漏文件或调整代码内容,避免冗余提交记录,保持提交历史的简洁性.适用于本地未推送的提交修复场景 ...

  2. git-fame实战操作

    参考网址:https://pydigger.com/pypi/git-fame,https://github.com/casperdcl/git-fame Git-fame 简介: Pretty-pr ...

  3. 解决MySQL 8.0 设置简单密码报错ERROR 1819 (HY000): Your password does not satisfy the current policy require...

    MySQL8.0下设置简单密码出现错误提示:ERROR 1819 (HY000): Your password does not satisfy the current policy requirem ...

  4. Excel工具类之“参数汇总”

    一.SXSSFWorkbook技术 1.冻结行数 代码 SXSSFWorkbook wb = new SXSSFWorkbook(); SXSSFSheet sheet = wb.createShee ...

  5. 遇到的问题之“web container destroy and kill the job.-Web容器销毁和终止作业”

    一.问题 JobThread toStop, stopReason:web container destroy and kill the job. 2023-11-22 18:10:10 [com.x ...

  6. RPC实战与核心原理之熔断限流

    熔断限流 服务端的自我保护 策略 在 RPC 调用中服务端的自我保护策略就是限流 如何实现 方式有很多,比如最简单的计数器,还有可以做到平滑限流的滑动窗口.漏斗算法以及令牌桶算法等等.其中令牌桶算法最 ...

  7. 基于ROS2/MoveIt!的工业机械臂控制系统开发全攻略

    1. 系统架构设计 1.1 系统组成模块 [Vision System] --> [Perception Node] | | [Gazebo Sim] <--> [ROS2 Cont ...

  8. odoo15接口调用qweb打印,将pdf旋转并下载到本地

    一.将pdf旋转的通用方法 def rotate_pdf(self, pdf, angle): """ rotateClockwise(90) 这里的pdf传:bytes ...

  9. 2 MyBatis动态sql之where标签|转

    1 MyBatis动态SQL之if 语句 2 MyBatis动态sql之where标签|转 3 MyBatis动态SQL之set标签|转 4 MyBatis动态SQL之trim元素|转 5 MyBat ...

  10. Spring Boot基于redis分布式锁模拟直播秒杀场景

    摘要:Spring Boot基于redis分布式锁模拟秒杀场景,未完待续 §前言   在Java中,关于锁我想大家都很熟悉,例如synchronized和Lock等.在并发编程中,我们通过加锁来保证数 ...