SciTech-Mathmatics-Real Space + Taylor Equation + Exponential Functions+Trigonometrical Functions + Complex Space + Euler's Equation
Derivative and Slope
Quick review: a \(derivative\) gives us the \(\text{slope of a function}\) at \(any\ point\).
These derivative rules can help us:
- The derivative of \(a\ constant\) is 0
- The derivative of \(a x\) is \(a\) (example: the derivative of \(2x\) is \(2\))
- The derivative of \(x^n\) is \(nx^{n-1}\) (example: \(\text{the derivative of }x^3\text{ is }3x^2\))
- We will use the little mark \(’\) to denote "\(\text{derivative of}\)" (example: \(f'(x)\) denote the \(\text{derivative of } f(x)\)).
\(Real\ Space\) and \(Taylor\ Series\):
- \(\large \text{First define } f^{(0)} (x) = f(x) \text{ and } 0! = 1\) :
- Formula:
\(\large \begin{array}{rll} \\
f(x) &=& \sum_{n=0}^{\infty}{\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n} \\
&=& f(x_0) +\sum_{n=1}^{\infty}{\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n} \\
\end{array}\) - Examples,\(Natural\ Exponential\ Functions\) and \(Trigonometrical\ Functions\):
\(\large \begin{array}{rll} \\
e^x &=& \sum_{n=0}^{\infty} {\frac{x^n}{n!}} \\
&=& 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots + \frac{x^n}{n!} \\
\cos (x) &=& \sum_{n=0}^{\infty} {\frac{(-1)^{(n)}}{(2n)!} {x^{(2n)}} } \\
&=& 1 + \frac{(-1)x^{2}}{2!} + \frac{(+1)x^{4}}{4!} + \cdots + \frac{(-1)^{(n)}}{(2n)!} {x^{(2n)}} \\
\sin (x) &=& \sum_{n=0}^{\infty} {\frac{(-1)^{n}}{(2n+1)!} {x^{(2n+1)}} } \\
&=& x + \frac{(-1)x^{3}}{3!} + \frac{(+1)x^{5}}{5!} + \cdots + \frac{(-1)^{n}}{(2n+1)!} {x^{(2n+1)}} \\
\end{array}\)
\(Complex\ Space\) and \(Euler's\ Equation\):
Let $\large \ x=i \cdot y $ and \(\large i^2=-1\):
\(\large \begin{array}{rll} \\
e^x = e^{i \cdot y} &=& \sum_{n=0}^{\infty} {\frac{(i \cdot y)^n}{n!}} \\
&=& 1 + i \cdot y + \frac{-1 \cdot y^2}{2!} + i \cdot \frac{-1 \cdot y^3}{3!} + \frac{+1 \cdot y^4}{4!} + i \cdot \frac{+1 \cdot y^5}{5!} + \cdots + i^{n} \cdot \frac{(y^n}{n!} \\
&=& (1 + \frac{-1 \cdot y^2}{2!} + \frac{+1 \cdot y^4}{4!} + \cdots ) + i ( y + \frac{-1 \cdot y^3}{3!} + \frac{+1 \cdot y^5}{5!} + \cdots ) \\
&=& \cos y + i \sin y \\
\therefore e^{ix} &=& \cos x + i \sin x\ , \text{ Euler's Equation} \\
\end{array}\)
So $\large the\ Taylor's\ Equation,\ Euler's\ Equation \text{ are unified in }Complex\ Space \text{ with } the\ Trigonometry\ Functions, the\ Natural\ Number \text{ and } Exponential\ Functions $
SciTech-Mathmatics-Real Space + Taylor Equation + Exponential Functions+Trigonometrical Functions + Complex Space + Euler's Equation的更多相关文章
- The space of such functions is known as a reproducing kernel Hilbert space.
Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...
- Kernel Functions for Machine Learning Applications
In recent years, Kernel methods have received major attention, particularly due to the increased pop ...
- Cognition math based on Factor Space (2016.05)
Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...
- 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)
我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...
- 5.24 Declaring Attributes of Functions【转】
转自:https://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Function-Attributes.html 5.24 Declaring Attributes o ...
- Part 11 string functions in sql server
Built in string functions in sql server 2008 LEFT, RIGHT, CHARINDEX and SUBSTRING functions in sql s ...
- [HIve - LanguageManual] Hive Operators and User-Defined Functions (UDFs)
Hive Operators and User-Defined Functions (UDFs) Hive Operators and User-Defined Functions (UDFs) Bu ...
- 理解滑动平均(exponential moving average)
1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以 ...
- Cauchy sequence Hilbert space 希尔波特空间的柯西序列
http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space with an inner prod ...
- System and method for critical address space protection in a hypervisor environment
A system and method in one embodiment includes modules for detecting an access attempt to a critical ...
随机推荐
- Git提交修正的核心技巧:git commit --amend 的专业实践与深度解析
结论先行 git commit --amend 是用于 修正最近一次提交 的高效工具,可修改提交信息.追加遗漏文件或调整代码内容,避免冗余提交记录,保持提交历史的简洁性.适用于本地未推送的提交修复场景 ...
- git-fame实战操作
参考网址:https://pydigger.com/pypi/git-fame,https://github.com/casperdcl/git-fame Git-fame 简介: Pretty-pr ...
- 解决MySQL 8.0 设置简单密码报错ERROR 1819 (HY000): Your password does not satisfy the current policy require...
MySQL8.0下设置简单密码出现错误提示:ERROR 1819 (HY000): Your password does not satisfy the current policy requirem ...
- Excel工具类之“参数汇总”
一.SXSSFWorkbook技术 1.冻结行数 代码 SXSSFWorkbook wb = new SXSSFWorkbook(); SXSSFSheet sheet = wb.createShee ...
- 遇到的问题之“web container destroy and kill the job.-Web容器销毁和终止作业”
一.问题 JobThread toStop, stopReason:web container destroy and kill the job. 2023-11-22 18:10:10 [com.x ...
- RPC实战与核心原理之熔断限流
熔断限流 服务端的自我保护 策略 在 RPC 调用中服务端的自我保护策略就是限流 如何实现 方式有很多,比如最简单的计数器,还有可以做到平滑限流的滑动窗口.漏斗算法以及令牌桶算法等等.其中令牌桶算法最 ...
- 基于ROS2/MoveIt!的工业机械臂控制系统开发全攻略
1. 系统架构设计 1.1 系统组成模块 [Vision System] --> [Perception Node] | | [Gazebo Sim] <--> [ROS2 Cont ...
- odoo15接口调用qweb打印,将pdf旋转并下载到本地
一.将pdf旋转的通用方法 def rotate_pdf(self, pdf, angle): """ rotateClockwise(90) 这里的pdf传:bytes ...
- 2 MyBatis动态sql之where标签|转
1 MyBatis动态SQL之if 语句 2 MyBatis动态sql之where标签|转 3 MyBatis动态SQL之set标签|转 4 MyBatis动态SQL之trim元素|转 5 MyBat ...
- Spring Boot基于redis分布式锁模拟直播秒杀场景
摘要:Spring Boot基于redis分布式锁模拟秒杀场景,未完待续 §前言 在Java中,关于锁我想大家都很熟悉,例如synchronized和Lock等.在并发编程中,我们通过加锁来保证数 ...