SciTech-Mathmatics-Real Space + Taylor Equation + Exponential Functions+Trigonometrical Functions + Complex Space + Euler's Equation
Derivative and Slope
Quick review: a \(derivative\) gives us the \(\text{slope of a function}\) at \(any\ point\).
These derivative rules can help us:
- The derivative of \(a\ constant\) is 0
- The derivative of \(a x\) is \(a\) (example: the derivative of \(2x\) is \(2\))
- The derivative of \(x^n\) is \(nx^{n-1}\) (example: \(\text{the derivative of }x^3\text{ is }3x^2\))
- We will use the little mark \(’\) to denote "\(\text{derivative of}\)" (example: \(f'(x)\) denote the \(\text{derivative of } f(x)\)).
\(Real\ Space\) and \(Taylor\ Series\):
- \(\large \text{First define } f^{(0)} (x) = f(x) \text{ and } 0! = 1\) :
- Formula:
\(\large \begin{array}{rll} \\
f(x) &=& \sum_{n=0}^{\infty}{\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n} \\
&=& f(x_0) +\sum_{n=1}^{\infty}{\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n} \\
\end{array}\) - Examples,\(Natural\ Exponential\ Functions\) and \(Trigonometrical\ Functions\):
\(\large \begin{array}{rll} \\
e^x &=& \sum_{n=0}^{\infty} {\frac{x^n}{n!}} \\
&=& 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots + \frac{x^n}{n!} \\
\cos (x) &=& \sum_{n=0}^{\infty} {\frac{(-1)^{(n)}}{(2n)!} {x^{(2n)}} } \\
&=& 1 + \frac{(-1)x^{2}}{2!} + \frac{(+1)x^{4}}{4!} + \cdots + \frac{(-1)^{(n)}}{(2n)!} {x^{(2n)}} \\
\sin (x) &=& \sum_{n=0}^{\infty} {\frac{(-1)^{n}}{(2n+1)!} {x^{(2n+1)}} } \\
&=& x + \frac{(-1)x^{3}}{3!} + \frac{(+1)x^{5}}{5!} + \cdots + \frac{(-1)^{n}}{(2n+1)!} {x^{(2n+1)}} \\
\end{array}\)
\(Complex\ Space\) and \(Euler's\ Equation\):
Let $\large \ x=i \cdot y $ and \(\large i^2=-1\):
\(\large \begin{array}{rll} \\
e^x = e^{i \cdot y} &=& \sum_{n=0}^{\infty} {\frac{(i \cdot y)^n}{n!}} \\
&=& 1 + i \cdot y + \frac{-1 \cdot y^2}{2!} + i \cdot \frac{-1 \cdot y^3}{3!} + \frac{+1 \cdot y^4}{4!} + i \cdot \frac{+1 \cdot y^5}{5!} + \cdots + i^{n} \cdot \frac{(y^n}{n!} \\
&=& (1 + \frac{-1 \cdot y^2}{2!} + \frac{+1 \cdot y^4}{4!} + \cdots ) + i ( y + \frac{-1 \cdot y^3}{3!} + \frac{+1 \cdot y^5}{5!} + \cdots ) \\
&=& \cos y + i \sin y \\
\therefore e^{ix} &=& \cos x + i \sin x\ , \text{ Euler's Equation} \\
\end{array}\)
So $\large the\ Taylor's\ Equation,\ Euler's\ Equation \text{ are unified in }Complex\ Space \text{ with } the\ Trigonometry\ Functions, the\ Natural\ Number \text{ and } Exponential\ Functions $
SciTech-Mathmatics-Real Space + Taylor Equation + Exponential Functions+Trigonometrical Functions + Complex Space + Euler's Equation的更多相关文章
- The space of such functions is known as a reproducing kernel Hilbert space.
Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...
- Kernel Functions for Machine Learning Applications
In recent years, Kernel methods have received major attention, particularly due to the increased pop ...
- Cognition math based on Factor Space (2016.05)
Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...
- 上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)
我们所用的是C.L.Evans "Partial Differential Equations" $\def\dashint{\mathop{\mathchoice{\,\rlap ...
- 5.24 Declaring Attributes of Functions【转】
转自:https://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Function-Attributes.html 5.24 Declaring Attributes o ...
- Part 11 string functions in sql server
Built in string functions in sql server 2008 LEFT, RIGHT, CHARINDEX and SUBSTRING functions in sql s ...
- [HIve - LanguageManual] Hive Operators and User-Defined Functions (UDFs)
Hive Operators and User-Defined Functions (UDFs) Hive Operators and User-Defined Functions (UDFs) Bu ...
- 理解滑动平均(exponential moving average)
1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exponentially weighted moving average),可以 ...
- Cauchy sequence Hilbert space 希尔波特空间的柯西序列
http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space with an inner prod ...
- System and method for critical address space protection in a hypervisor environment
A system and method in one embodiment includes modules for detecting an access attempt to a critical ...
随机推荐
- .NET Core短信验证(分布式session)
一.手机短信验证码登录过程 1.构造手机验证码,需要生成一个6位的随机数字串: 2.找短信平台获取使用接口向短信平台发送手机号和验证码,然后短信平台再把验证码发送到制定手机号上 3.将手机号验证码.操 ...
- SpringBoot——yaml配置文件
yaml简介 YAML 是 "YAML Ain't a Markup Language"(YAML 不是一种标记语言).在开发的这种语言时,YAML 的意思其实是:"Ye ...
- P2150 [NOI2015] 寿司晚宴 题解
P2150 [NOI2015] 寿司晚宴 刚开始看错题了,推了一个与原题类似的 DP 方程,然后不会优化,笑了. 思路 首先看到 \(n\) 很小,然后质因子个数就更少了. 因此第一反应是将所有的质因 ...
- 京东首页html+css1.0
小菜鸟的学习记录,还望各位猿兄不吝赐教 文章目录 效果图 源码 HTML文件 css文件 效果图 源码 HTML文件 <!DOCTYPE html> <html> <he ...
- 面试官说又逮到一个不会用Git的
这里这写简要,要看具体的步骤及解释清移步:https://www.bilibili.com/read/cv10510952 如果是自己创建仓库写代码上传(demo是自己仓库的自定义名字): git i ...
- docker-compose 启动容器
docker-compose 是什么 docker-compose 是一个用来把 docker 自动化的东西.有了 docker-compose 你可以把所有繁复的 docker 操作全都一条命令,自 ...
- 重磅开源 基于AI大语言模型的AI 助手全套开源解决方案 AI开源平台
介绍 GeekAI 基于AI大语言模型的AI 助手全套开源解决方案,自带运营管理后台,开箱即用.集成了 OpenAI, Claude, 通义千问,Kimi,DeepSeek等多个平台的大语言模型. 基 ...
- JAVA JUC干货之线程池实现原理和源码详解(上)
目录 综述 七个核心参数 线程工厂 拒绝策略 AbortPolicy CallerRunsPolicy DiscardOldestPolicy DiscardPolicy 自定义拒绝策略 监控线程池运 ...
- python爬虫学习——bs4
bs4 将一个复杂的html文档转化为一个复杂的树形结构,每个节点都是python对象,所有对象可以分为四种:Tag.NavigableString.BeautifulSoup.Comment fro ...
- golang中写个字符串遍历谁不会?且看我如何提升 50 倍
作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu Github 公众号:一本正经的瞎扯 引子 VictoriaMetrics (Github: h ...