Solution -「CF 808E」Selling Souvenirs
\(\mathscr{Description}\)
Link.
01 背包。
物品种类 \(n\le10^5\),背包容量 \(m\le3\times10^5\),单个物品体积 \(w\in\{1,2,3\}\),价值 \(c\le10^9\)。
\(\mathscr{Solution}\)
模拟赛 T3(不是说这题)什么降智选择结构,我直接开摆。
Motivation: 只有两种体积,我会 two-pointers。
构造一发,把 \(w=1\) 的物品转化成 \(w=2\) 的物品:枚举 \(w=1\) 选择的奇偶性,若为奇,最大者必选,其余两两打包;若为偶,直接两两打包。化归到 \(w=\{2,3\}\) 的情况,算上排序的复杂度就能 \(\mathcal O(n\log n)\) 做了。
騞然已解,如土委地。(
这种拆物品、组合物品的构造 trick 还挺厉害的,要多留意一下√
\(\mathcal {Code}\)
/*+Rainybunny+*/
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i)
typedef long long LL;
inline char fgc() {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && (q = buf + fread(p = buf, 1, 1 << 17, stdin), p == q) ?
EOF : *p++;
}
template <typename Tp = int>
inline Tp rint() {
Tp x = 0, s = fgc(), f = 1;
for (; s < '0' || '9' < s; s = fgc()) f = s == '-' ? -f : f;
for (; '0' <= s && s <= '9'; s = fgc()) x = x * 10 + (s ^ '0');
return x * f;
}
const int MAXN = 1e5;
int n, m;
std::vector<int> buc[3];
inline LL solve() {
std::sort(buc[1].begin(), buc[1].end(), std::greater<int>());
LL ret = 0, sum = 0;
int p = 0, q = 0;
while (p < buc[2].size() && (p + 1) * 3 <= m) sum += buc[2][p++];
while (q < buc[1].size() && (q + 1) * 2 + p * 3 <= m)
sum += buc[1][q++];
ret = std::max(ret, sum);
while (~--p) {
sum -= buc[2][p];
while (q < buc[1].size() && (q + 1) * 2 + p * 3 <= m)
sum += buc[1][q++];
ret = std::max(ret, sum);
}
return ret;
}
int main() {
n = rint(), m = rint();
rep (i, 1, n) {
int w = rint(), c = rint();
buc[w - 1].push_back(c);
}
std::sort(buc[0].begin(), buc[0].end(), std::greater<int>());
std::sort(buc[2].begin(), buc[2].end(), std::greater<int>());
auto tmp(buc[1]);
for (int i = 0; i + 1 < buc[0].size(); i += 2) {
buc[1].push_back(buc[0][i] + buc[0][i + 1]);
}
LL ans = solve();
if (buc[0].size()) {
buc[1] = tmp;
for (int i = 1; i + 1 < buc[0].size(); i += 2) {
buc[1].push_back(buc[0][i] + buc[0][i + 1]);
}
--m, ans = std::max(ans, solve() + buc[0][0]);
}
printf("%lld\n", ans);
return 0;
}
Solution -「CF 808E」Selling Souvenirs的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
- Solution -「CF 487E」Tourists
\(\mathcal{Description}\) Link. 维护一个 \(n\) 个点 \(m\) 条边的简单无向连通图,点有点权.\(q\) 次操作: 修改单点点权. 询问两点所有可能路 ...
随机推荐
- 工作中的技术总结_ form表单的前后台交互 _20210825
工作中的技术总结_ form表单的前后台交互 _20210825 在项目经常会使用 form 表单 进行数据的 页面展示 以及数据的 提交和后台处理 1.数据是怎么从后台传递到前台的 model.ad ...
- c++设计模式:设计原则
c++设计八大原则(降低改变带来的代码修改) 一.依赖倒置原则(DIP) 1.高层模块(稳定)不应该依赖于低层模块(变化),二者应该依赖于抽象(更稳定) <高层模块 包括 低层模块所依赖的抽象, ...
- Windows系统DOS命令详解
一. DOS 的历史 DOS(Disk Operating System),磁盘操作系统 1980 年,西雅图程序员蒂姆-帕特森,86-DOS 1981 年由微软公司购买并改进,更名为 MS-DOS ...
- 基于Java+SpringBoot+Mysql实现的古诗词平台功能设计与实现二
一.前言介绍: 1.1 项目摘要 随着信息技术的迅猛发展和数字化时代的到来,传统文化与现代科技的融合已成为一种趋势.古诗词作为中华民族的文化瑰宝,具有深厚的历史底蕴和独特的艺术魅力.然而,在现代社会中 ...
- axios获取上传进度报错xhr.upload.addEventListener is not a function
错误问题 Vue:xhr.upload.addEventListener is not a function 这个问题是因为mockjs改动了axios里面XMLHttpRequest对象致使的 根据 ...
- JVM 核心技术
1.Java代码编译和执行的整个过程: 2. JVM内存管理及垃圾回收机制: 先看图, 二.Java代码编译和执行的整个过程 Java代码编译是由Java源码编译器来完成,流程图如下所示: Java ...
- python之高级数据结构Collections
1. Collections collections模块包含了内建类型之外的一些有用的工具,例如Counter.defaultdict.OrderedDict.deque以及nametuple.其中C ...
- vue3-setup中使用响应式
基本类型的响应式数据 在 Vue 3 中,ref是一个函数,用于创建响应式的数据.它主要用于处理基本类型(如数字.字符串.布尔值等)的数据响应式 当我们调用 ref 函数时,会返回一个包含一个 .va ...
- Win10使用SSH反向隧道(端口转发)连接远程桌面
应用场景: 如果你有Linux云主机(腾讯.华为等),且公司有一台只有内网IP (或动态IP) 的Win10工作机:你计划在家里工作时,通过家里的电脑连接公司的工作机 (且不想使用类似Teamview ...
- uniapp云数据库笔记
1.基本概念 云数据库:一个云空间只能有一个数据库,一个数据库可以有多个集合(表),每个表可以有多行数据(文档) DB Schema:是基于 JSON 格式定义的数据结构的规范,每个表有多少字段都需要 ...