POJ 2391 二分+最大流
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 19066 | Accepted: 4138 | 
Description
The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.
Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.
Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.
Input
* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.
* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.
Output
Sample Input
3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120
Sample Output
110
Hint
In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.
Source
//先floyd求出每两个点之间的最短距离,二分距离,如果两点之间的距离小于等于此
//二分值mid,两点之间建容量为inf的边,还要拆点,源点到i建容量为i点牛数量的
//边,i+n到汇点建容量为i点牛棚能容纳牛数量的边,看最大流是否是牛的总数。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
const int maxn=;
const int inf=0x7fffffff;
const ll llinf=(1LL<<);
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void Init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void Addedge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool Bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=Dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(Bfs()){
memset(cur,,sizeof(cur));
flow+=Dfs(s,inf);
}
return flow;
}
}dc;
int N,M,a,b,c,x[maxn],y[maxn];
ll mp[maxn][maxn];
void Floyd(ll &r){
for(int k=;k<=N;k++)
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
if(mp[i][k]!=llinf&&mp[k][j]!=llinf)
mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);
for(int i=;i<=N;i++)
for(int j=;j<=N;j++){
if(mp[i][j]!=llinf) r=max(r,mp[i][j]);
}
}
int Solve(ll mid){
dc.Init(*N+);
for(int i=;i<=N;i++){
dc.Addedge(,i,x[i]);
dc.Addedge(i+N,*N+,y[i]);
for(int j=;j<=N;j++)
if(mp[i][j]<=mid)
dc.Addedge(i,j+N,inf);
}
return dc.Maxflow(,*N+);
}
int main()
{
while(scanf("%d%d",&N,&M)==){
int sum1=,sum2=;
for(int i=;i<=N;i++){
scanf("%d%d",&x[i],&y[i]);
sum1+=x[i];sum2+=y[i];
}
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
mp[i][j]=(i==j?:llinf);
while(M--){
scanf("%d%d%d",&a,&b,&c);
mp[a][b]=mp[b][a]=min(mp[a][b],1LL*c);
}
ll l=,r=,mid,ans;
Floyd(r);
if(Solve(r)!=sum1){
printf("-1\n");
continue;
}
while(l<=r){
mid=(l+r)>>;
if(Solve(mid)==sum1){
ans=mid;r=mid-;
}
else l=mid+;
}
printf("%I64d\n",ans);
}
return ;
}
POJ 2391 二分+最大流的更多相关文章
- poj 2391 (Floyd+最大流+二分)
		
题意:有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 两个避雨点间可以相互到 ...
 - poj 3228(二分+最大流)
		
题目链接:http://poj.org/problem?id=3228 思路:增设一个超级源点和一个超级汇点,源点与每一个gold相连,容量为gold数量,汇点与仓库相连,容量为仓库的容量,然后就是二 ...
 - poj 2455 二分+最大流
		
这个因为点少用邻接矩阵做的. 题意:求由1到n的t条不重复路径中最大边权值的最小值. 思路:先对边权进行排序,然后二分边权值,建图求从1到n的最大流,当最大流为t时便求出答案. 代码: #includ ...
 - POJ 2112 二分+最大流
		
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 17297 Accepted: 6203 ...
 - POJ 3228 二分最大流
		
题意: 给你N个位置,每个位置都有金矿数量和仓库数量,然后位置和位置之间的距离给了出来,最后问你吧所有的金矿都放到库里面走的路径 最长的最短 是多少? 思路: 比较简单的一个题, ...
 - poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap
		
poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...
 - poj 2391 Ombrophobic Bovines 最短路 二分 最大流 拆点
		
题目链接 题意 有\(n\)个牛棚,每个牛棚初始有\(a_i\)头牛,最后能容纳\(b_i\)头牛.有\(m\)条道路,边权为走这段路所需花费的时间.问最少需要多少时间能让所有的牛都有牛棚可待? 思路 ...
 - uvalive 3231 Fair Share 公平分配问题 二分+最大流 右边最多流量的结点流量尽量少。
		
/** 题目: uvalive 3231 Fair Share 公平分配问题 链接:https://vjudge.net/problem/UVALive-3231 题意:有m个任务,n个处理器,每个任 ...
 - POJ - 2018 二分+单调子段和
		
依然是学习分析方法的一道题 求一个长度为n的序列中的一个平均值最大且长度不小于L的子段,输出最大平均值 最值问题可二分,从而转变为判定性问题:是否存在长度大于等于L且平均值大于等于mid的字段和 每个 ...
 
随机推荐
- 【CQOI 2007】 余数求和
			
题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如G(10, 5)=5 ...
 - C指针函数中的局部变量返回
			
所谓指针函数其实就是 :一个函数的返回值为指针. 指针函数定义:返回类型标识符* 函数名(形参列表){函数体} eg: int* fun1(int n){} 指针函数和局部变量返回解析: 简 ...
 - Dev c++ 调试步骤
			
不能调试的时候,修改下列地方: 1.在“工具”->编译选项->”Add following commands when calling complier”下面的编辑框里写入:-g3 2.在 ...
 - Ubuntu 配置 Android 开发 环境
			
. 果断换Ubuntu了, Ubuntu的截图效果不好, 不能设置阴影 ... 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article ...
 - android 出现Make sure the Cursor is initialized correctly before accessing data from it
			
Make sure the Cursor is initialized correctly before accessing data from it 详细错误是:java.lang.IllegalS ...
 - Tomcat服务器学习和使用(一)
			
一.Tomcat服务器端口的配置 Tomcat的所有配置都放在conf文件夹之中,里面的server.xml文件是配置的核心文件. 如果想修改Tomcat服务器的启动端口,则可以在server.xml ...
 - IPReversePathFilter
			
nstat TcpExtIPReversePathFilter for i in /proc/sys/net/ipv4/conf/*/rp_filter ; do > echo 0 > $ ...
 - Token安全
			
token相对安全加密算法 http://blog.csdn.net/q8649912/article/details/52370565 关于文章的理解 1 sessionid 这个名词应该理解为:一 ...
 - new关键字 、this关键字、base关键字
			
使用new,所做的三件事: 1. (类是引用对象,引用对象是在堆中开辟空间)在堆中开辟空间 2. 在开辟的堆空间中创建对象 3. 调用对象的构建函数 4. 隐藏父类成员:子类的成员可以与隐藏从父类继承 ...
 - 使用bat执行java项目
			
前提:java项目要有main方法 类似写法如下: set JAVA_HOME=C:\jdk1.6 set LIB_HOME=. set JAVA_JAR=. set JAVA_JAR=%JAVA_J ...