【费用流】bzoj1221 [HNOI2001] 软件开发
几乎为“线性规划与网络流24题”中的餐巾问题。
这里把S看成毛巾的来源,T看成软件公司,我们的目的就是让每天的毛巾满足要求(边满流)。
引用题解:
【问题分析】
网络优化问题,用最小费用最大流解决。
【建模方法】
把每天分为二分图两个集合中的顶点Xi,Yi,建立附加源S汇T。
1、从S向每个Xi连一条容量为ri,费用为0的有向边。
2、从每个Yi向T连一条容量为ri,费用为0的有向边。
3、从S向每个Yi连一条容量为无穷大,费用为p的有向边。
4、从每个Xi向Xi+1(i+1<=N)连一条容量为无穷大,费用为0的有向边。
5、从每个Xi向Yi+m+1(i+m+1<=N)连一条容量为无穷大,费用为f的有向边。
6、从每个Xi向Yi+n+1(i+n+1<=N)连一条容量为无穷大,费用为s的有向边。
求网络最小费用最大流,费用流值就是要求的最小总花费。
【建模分析】
这个问题的主要约束条件是每天的餐巾够用,而餐巾的来源可能是最新购买,也可能是前几天送洗,今天刚刚洗好的餐巾。每天用完的餐巾可以选择送到快洗部或慢洗部,或者留到下一天再处理。
经过分析可以把每天要用的和用完的分离开处理,建模后就是二分图。二分图X集合中顶点Xi表示第i天用完的餐巾,其数量为ri,所以从S向Xi连接容量为ri的边作为限制。Y集合中每个点Yi则是第i天需要的餐巾,数量为ri,与T连接的边容量作为限制。每天用完的餐巾可以选择留到下一天(Xi->Xi+1),不需要花费,送到快洗部(Xi->Yi+m+1),费用为f,送到慢洗部(Xi->Yi+n+1),费用为s。每天需要的餐巾除了刚刚洗好的餐巾,还可能是新购买的(S->Yi),费用为p。
在网络上求出的最小费用最大流,满足了问题的约束条件(因为在这个图上最大流一定可以使与T连接的边全部满流,其他边只要有可行流就满足条件),而且还可以保证总费用最小,就是我们的优化目标。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
#define MAXN 2011
#define MAXM 150011
#define INF 2147483647
int S,T,n;
int en,u[MAXM],v[MAXM],first[MAXN],next[MAXM],cap[MAXM],cost[MAXM];//Next Array
bool inq[MAXN];
int d[MAXN]/*spfa*/,p[MAXN]/*spfa*/,a[MAXN]/*可改进量*/;
int C,WA,WB,CA,CB,X;
queue<int>q;
void Init_MCMF(){memset(first,-1,sizeof(first));en=0;S=0;T=(n<<1|1);}
void AddEdge(const int &U,const int &V,const int &W,const int &C)
{u[en]=U; v[en]=V; cap[en]=W; cost[en]=C; next[en]=first[U]; first[U]=en++;
u[en]=V; v[en]=U; cost[en]=-C; next[en]=first[V]; first[V]=en++;}
bool Spfa(int &Flow,int &Cost)
{
memset(d,0x7f,sizeof(d));
memset(inq,0,sizeof(inq));
d[S]=0; inq[S]=1; p[S]=0; a[S]=INF; q.push(S);
while(!q.empty())
{
int U=q.front(); q.pop(); inq[U]=0;
for(int i=first[U];i!=-1;i=next[i])
if(cap[i] && d[v[i]]>d[U]+cost[i])
{
d[v[i]]=d[U]+cost[i];
p[v[i]]=i;
a[v[i]]=min(a[U],cap[i]);
if(!inq[v[i]]) {q.push(v[i]); inq[v[i]]=1;}
}
}
if(d[T]>2100000000) return 0;
Flow+=a[T]; Cost+=d[T]*a[T]; int U=T;
while(U!=S)
{
cap[p[U]]-=a[T]; cap[p[U]^1]+=a[T];
U=u[p[U]];
}
return 1;
}
int Mincost()
{
int Flow=0,Cost=0;
while(Spfa(Flow,Cost));
return Cost;
}
int main()
{
scanf("%d%d%d%d%d%d",&n,&WA,&WB,&C,&CA,&CB);
Init_MCMF();
for(int i=1;i<=n;++i)
{
scanf("%d",&X);
AddEdge(S,i,X,0);
AddEdge(i+n,T,X,0);
AddEdge(S,i+n,INF,C);
if(i+1<=n) AddEdge(i,i+1,INF,0);
if(i+WA+1<=n) AddEdge(i,i+WA+1+n,INF,CA);
if(i+WB+1<=n) AddEdge(i,i+WB+1+n,INF,CB);
}
printf("%d\n",Mincost());
return 0;
}
【费用流】bzoj1221 [HNOI2001] 软件开发的更多相关文章
- bzoj1221: [HNOI2001] 软件开发
挖坑.我的那种建图方式应该也是合理的.然后连样例都过不了.果断意识到应该为神奇建图法... #include<cstdio> #include<cstring> #includ ...
- BZOJ1221 [HNOI2001] 软件开发 【费用流】
题目 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛 ...
- BZOJ1221 [HNOI2001]软件开发 - 费用流
题解 非常显然的费用流. 但是建图还是需要思考的QuQ 将每天分成两个节点 $x_{i,1}, x_{i,2} $, $ x_{i,1}$用于提供服务, $x_{i ,2}$ 用来从源点获得$nd[i ...
- BZOJ 1221: [HNOI2001] 软件开发(最小费用最大流)
不知道为什么这么慢.... 费用流,拆点.... --------------------------------------------------------------------------- ...
- bzoj 1221 [HNOI2001] 软件开发 费用流
[HNOI2001] 软件开发 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1938 Solved: 1118[Submit][Status][D ...
- BZOJ 1221: [HNOI2001] 软件开发
1221: [HNOI2001] 软件开发 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1428 Solved: 791[Submit][Stat ...
- BZOJ 3280: 小R的烦恼 & BZOJ 1221: [HNOI2001] 软件开发
3280: 小R的烦恼 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 399 Solved: 200[Submit][Status][Discuss ...
- 【BZOJ 1221】 1221: [HNOI2001] 软件开发 (最小费用流)
1221: [HNOI2001] 软件开发 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1581 Solved: 891 Description ...
- 【bzoj1221】[HNOI2001] 软件开发 费用流
题目描述 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消 ...
随机推荐
- 我的Android进阶之旅------>解决Android Studio报错:DefaultAndroidProject : Unsupported major.minor version 52.0
问题描述 今天使用Android Studio 2.0打开我之前的项目时,编译报了如下错误: Error:Cause: com/android/build/gradle/internal/model/ ...
- 我的Android进阶之旅------>Android采用AES+RSA的加密机制对http请求进行加密
前言 未加密的抓包截图 加密之后的抓包截图 基本需求及概念 AES算法 AES基本原理及算法流程 AES算法流程 RSA算法 RSA算法基本原理及流程 RSA算法实现流程 AES与RSA相结合数据加密 ...
- Event对象、队列、multiprocessing模块
一.Event对象 线程的一个关键特性是每个线程都是独立运行且状态不可预测.如果程序中的其他线程需要通过判断某个线程的状态来确定自己下一步的操作,这时线程同步问题就 会变得非常棘手.为了解决这些问题, ...
- Jenkins+maven+Tomcat+SVN一键自动打包部署应用到服务器
今天请教了大神,终于把jenkins给搞明白了 现在做下笔记,防止自己老年痴呆又忘了怎么配置 (截图可能不够清晰,有不清楚的随时评论打call) 机器配置: 安装配置规划 机器 192.168.169 ...
- 转:用unix socket加速php-fpm、mysql、redis的连接
图虫的服务器长期是单机运行.估计除了mysql之外,php-fpm和redis还可以在单机上共存很长时间.(多说服务器早就达成了单机每日2000万+动态请求,所以我对单机搞定图虫的大流量非常乐观) 如 ...
- Educational Codeforces Round 11B. Seating On Bus 模拟
地址:http://codeforces.com/contest/660/problem/B 题目: B. Seating On Bus time limit per test 1 second me ...
- 操作JavaScript数组
unshift:在数据首段添加元素. push: 在数组的末端添加元素. shift:移除并返回第一个元素,会影响 数组长度. pop:移除并返回最后一个元素.会影响 数组长度. delete 数组 ...
- http://blog.csdn.net/dancing_night/article/details/46698853
http://blog.csdn.net/dancing_night/article/details/46698853
- 关于git bash的问题,pull不下来(登录之后,git帮你记住了,想切换其他用户)
参考博客: https://www.jianshu.com/p/8a7f257e07b8 从某个项目地址pull代码下来,老是报错 fatal: Authentication failed for ' ...
- 20145235李涛《网络对抗》Exp7 网络欺诈技术防范
基础问题回答 通常在什么场景下容易受到DNS spoof攻击? 使用未知的公共wifi或者在不安全的局域网下容易受到DNS spoof攻击. 在日常生活工作中如何防范以上两攻击方法? 首先要提高防范意 ...