[P4063][JXOI2017]数列(DP)
题目描述
九条可怜手上有一个长度为 n 的整数数列 ri,她现在想要构造一个长度为 n 的,满足如下条件的整数数列 A:
• 1 ≤ Ai ≤ ri。
• 对于任意 3 ≤ i ≤ n,令 R 为 A1 至 Ai−2 中大于等于 Ai−1 的最小值,L 为 A1 至 Ai−2中小于等于 Ai−1 的最大值。Ai 必须满足 L ≤ Ai ≤ R。如果不存在大于等于 Ai−1 的,那么 R = +∞;如果不存在小于等于 Ai−1 的,那么 L = −∞。
现在可怜想要知道共有多少不同的数列满足这个条件。两个数列 A 和 B 是不同的当且仅当至少存在一个位置 i 满足 Ai ≠ Bi。
输入输出格式
输入格式:
第一行输入一个整数 n,第二行输入 n 个整数 ri。
输出格式:
输出一个整数表示方案数,答案可能很大,对 998244353 取模后输出。
输入输出样例
说明
满足条件的序列有 [1, 1, 1], [1, 2, 1], [1, 2, 2], [2, 1, 1], [2, 1, 2], [2, 2, 2]。
测试点编号
1.2 n<=7 ri<=7
3.4 n<=50 ri<=10
5.6 n<=50 ri<=16
7.8 n<=50 ri<=50
9.10 n<=50 ri<=150
https://blog.csdn.net/dofypxy/article/details/79145068
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,mod=;
int n,ans,r[N],mx,f[N][N][N],sl[N][N][N],sr[N][N][N]; int main(){
freopen("P4063.in","r",stdin);
freopen("P4063.out","w",stdout);
scanf("%d",&n);
rep(i,,n) scanf("%d",&r[i]),mx=max(mx,r[i]+);
rep(i,,mx) sl[][i][mx]=sr[][][i]=;
rep(i,,n){
memset(f,,sizeof(f));
rep(a,,r[i]){
rep(L,,a-) rep(R,a+,mx) f[a][L][R]=(sl[L][L][R]+sr[R][L][R])%mod;
rep(R,a,mx) f[a][a][a]=(f[a][a][a]+sl[a][mx][R])%mod;
rep(a1,,mx) if (a1!=a) f[a][a][a]=(f[a][a][a]+sl[a1][a1][a]+sr[a1][a][a1])%mod;
}
memset(sl,,sizeof(sl)); memset(sr,,sizeof(sr));
rep(a,,r[i]) rep(L,,mx) rep(R,a,mx) sl[a][L][R]=(f[a][L][R]+(L ? sl[a][L-][R] : ))%mod;
rep(a,,r[i]) rep(L,,a) for (int R=mx; ~R; R--) sr[a][L][R]=(f[a][L][R]+sr[a][L][R+])%mod;
}
rep(a,,r[n]) rep(L,,a) rep(R,a,mx) ans=(ans+f[a][L][R])%mod;
printf("%d\n",ans);
return ;
}
[P4063][JXOI2017]数列(DP)的更多相关文章
- 洛谷P4063 [JXOI2017]数列(dp)
题意 题目链接 Sol 这题想还是不难想的,就是写起来很麻烦,然后去看了一下loj的最短代码表示只能Orz 首先不难发现一条性质:能够选择的区间一定是不断收缩的,而且新的可选区间一定是旧区间的某个位置 ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- BZOJ2431:[HAOI2009]逆序对数列(DP,差分)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- [编程题] 小易喜欢的数列 dp
https://www.nowcoder.com/question/next?pid=6291726&qid=112729&tid=12736753 [编程题] 小易喜欢的数列 时间限 ...
- 【bzoj2431】[HAOI2009]逆序对数列 dp
题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...
- 不等式数列 DP
度度熊最近对全排列特别感兴趣,对于1到n的一个排列,度度熊发现可以在中间根据大小关系插入合适的大于和小于符号(即 '>' 和 '<' )使其成为一个合法的不等式数列.但是现在度度熊手中只有 ...
- BZOJ 2431 逆序对数列 DP
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MB Description 对于一个数列{ai},如果有i< j且ai> ...
- luoguP1415 拆分数列 [dp]
题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时,字典序最大的解(即先要满足最后一个数最小:如果有多组解,则使得第一个数尽量大:如 ...
- [BZOJ2431][HAOI2009]逆序对数列(DP)
从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...
随机推荐
- 【洛谷 P2742】【模板】二维凸包
题目链接 二维凸包板子..有时间会补总结的. #include <cstdio> #include <cmath> #include <algorithm> usi ...
- jQuery mobile 滑动打开面板
一.首先在<head></head>里面引入jQuery库.jQuery mobile库以及jQuery mobile样式 <link rel="stylesh ...
- Python面向对象学习2(面向对象的语法和特性,待更新)
上一个内容我们介绍了面向对象和面向对象场景现在我们来学习下语法和特性 1,面向对象基本语法: # -*- coding:utf-8 -*- # Author: Colin Yao class Dog( ...
- A题 hdu 1235 统计同成绩学生人数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1235 统计同成绩学生人数 Time Limit: 2000/1000 MS (Java/Others) ...
- 关于EditText.setText()无法显示的问题
将EditText在初始化后调用EditText.setSaveEnabled(false); 让Android 系统不保存值,这样就不会恢复了.
- Django rest framework 限制访问频率(源码分析)
基于 http://www.cnblogs.com/ctztake/p/8419059.html 当用发出请求时 首先执行dispatch函数,当执行当第二部时: #2.处理版本信息 处理认证信息 处 ...
- bind类成员函数
首先描述一个情景: 先贴出代码: class Solution { public: bool compare(int a, int b) { return a > b; } int functi ...
- linux下实现在程序运行时的函数替换(热补丁)【转】
转自:http://www.cnblogs.com/leo0000/p/5632642.html 声明:以下的代码成果,是参考了网上的injso技术,在本文的最后会给出地址,同时非常感谢injso技术 ...
- 自动化测试===uiautomator2类似appium
项目地址:https://github.com/openatx/uiautomator2 http://mp.weixin.qq.com/s/YKxwW-pL603Fll3QIWapVw https: ...
- C 基础框架开发
引言 有的人真的是天命所归 延安时期炸弹 投到他院子都 没炸. 有些事无法改变 是命! 我们也快'老'了, 常回家看看. 前言 扯淡结束了,今天分享的可能有点多,都很简单,但是糅合在一起就是有点复杂. ...