【UOJ #79】一般图最大匹配 带花树模板
http://uoj.ac/problem/79
带花树模板,做法详见cyb的论文或fhq的博客。
带花树每次对一个未盖点bfs增广,遇到奇环就用并查集缩环变成花(一个点),同时记录每个点的Next(表示匹配),状态s(-1表示这个点没访问过,0表示这个点可以搜另一条相邻的未盖边,1表示这个点不能用于搜另一条相邻的未盖边),pre数组(u原先的匹配是Next[u],增广时u的匹配断掉了,u就与pre[u]进行匹配,即Next[u]=pre[u],Next[pre[u]]=u)。从一个点pre和Next交替的走出来的路径表示一条通往bfs树的根的路径(用于找到另一个未盖点后进行增广)。
时间复杂度\(O(n^3)\)。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 503;
const int M = 130003;
struct node {int nxt, to;} E[M << 1];
int Next[N], cnt = 0, point[N], n, m, qu[N], s[N], pre[N], fa[N];
void ins(int u, int v) {E[++cnt] = (node) {point[u], v}; point[u] = cnt;}
int find(int x) {return fa[x] == x ? x : (fa[x] = find(fa[x]));}
int tim = 0, vis[N];
int getlca(int u, int v) {
++tim;
while (true) {
if (u) {
if (vis[u] == tim) return u;
vis[u] = tim;
u = find(pre[Next[u]]);
}
swap(u, v);
}
}
int p, q;
void blossom(int u, int v, int lca) {
while (find(u) != lca) {
pre[u] = v;
v = Next[u];
if (s[v] == 1) {s[v] = 0; if (++q == N) q = 0; qu[q] = v;}
if (fa[v] == v) fa[v] = lca;
if (fa[u] == u) fa[u] = lca;
u = pre[v];
}
}
int match(int x) {
memset(s + 1, -1, sizeof(int) * n);
for (int i = 1; i <= n; ++i) fa[i] = i;
int u, v; p = 0; q = 1;
s[qu[1] = x] = 0; pre[x] = 0;
while (p != q) {
if (++p == N) p = 0; u = qu[p];
for (int i = point[u]; i; i = E[i].nxt) {
v = E[i].to;
if (s[v] == -1) {
s[v] = 1; pre[v] = u;
if (!Next[v]) {
int last;
while (u) {
last = Next[u];
Next[u] = v; Next[v] = u;
u = pre[v = last];
}
return 1;
}
s[Next[v]] = 0; if (++q == N) q = 0; qu[q] = Next[v];
} else if (s[v] == 0 && find(u) != find(v)) {
int lca = getlca(fa[u], fa[v]);
blossom(u, v, lca);
blossom(v, u, lca);
}
}
}
return 0;
}
int main() {
scanf("%d%d", &n, &m);
int u, v;
for (int i = 1; i <= m; ++i) {
scanf("%d%d", &u, &v);
ins(u, v); ins(v, u);
}
int ans = 0;
for (int i = 1; i <= n; ++i)
if (!Next[i])
ans += match(i);
printf("%d\n", ans);
for (int i = 1; i <= n; ++i)
printf("%d ", Next[i]);
return 0;
}
【UOJ #79】一般图最大匹配 带花树模板的更多相关文章
- UOJ #79 一般图最大匹配 带花树
http://uoj.ac/problem/79 一般图和二分图的区别就是有奇环,带花树是在匈牙利算法的基础上对奇环进行缩点操作,复杂度似乎是O(mn)和匈牙利一样. 具体操作是一个一个点做类似匈牙利 ...
- HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力
一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...
- ZOJ 3316 Game 一般图最大匹配带花树
一般图最大匹配带花树: 建图后,计算最大匹配数. 假设有一个联通块不是完美匹配,先手就能够走那个没被匹配到的点.后手不论怎么走,都必定走到一个被匹配的点上.先手就能够顺着这个交错路走下去,最后一定是后 ...
- 【刷题】UOJ #79 一般图最大匹配
从前一个和谐的班级,所有人都是搞OI的.有 \(n\) 个是男生,有 \(0\) 个是女生.男生编号分别为 \(1,-,n\) . 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个 ...
- 【UOJ 79】 一般图最大匹配 (✿带花树开花)
从前一个和谐的班级,所有人都是搞OI的.有 n 个是男生,有 0 个是女生.男生编号分别为 1,…,n. 现在老师想把他们分成若干个两人小组写动态仙人掌,一个人负责搬砖另一个人负责吐槽.每个人至多属于 ...
- uoj#79. 一般图最大匹配(带花树)
传送门 带花树 不加证明的说一下过程好了:每次从一个未匹配点\(S\)出发bfs,设\(S\)为\(1\)类点,如果当前点\(v\)在本次bfs中未经过,分为以下两种情况 1.\(v\)是未匹配点,那 ...
- 【learning】一般图最大匹配——带花树
问题描述 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\) ...
- UOJ #79. 一般图最大匹配
板子: #include<iostream> #include<cstdio> #include<algorithm> #include<vector> ...
- kuangbin带你飞 匹配问题 二分匹配 + 二分图多重匹配 + 二分图最大权匹配 + 一般图匹配带花树
二分匹配:二分图的一些性质 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j ...
随机推荐
- 图连通性【tarjan点双连通分量、边双联通分量】【无向图】
根据 李煜东大牛:图连通性若干拓展问题探讨 ppt学习. 有割点不一定有割边,有割边不一定有割点. 理解low[u]的定义很重要. 1.无向图求割点.点双联通分量: 如果对一条边(x,y),如果low ...
- [HDU5214]Movie解题报告|小水题大智慧
Movie Cloud and Miceren like watching movies. Today, they want to choose some wonderful scenes from ...
- js/jq 键盘上下左右回车按键
js判断上下左右回车按键: document.onkeydown=function(e){ e=window.event||e; switch(e.keyCode){ case 37: //左键 co ...
- Redis缓存Mysql模拟用户登录Java实现实例[www]
Redis缓存Mysql模拟用户登录Java实现实例 https://jingyan.baidu.com/article/09ea3ede1dd0f0c0aede3938.html redis+mys ...
- Kettle提高输入输出数据总结
1 mysql在数据连接是可以通过设置一下三个三处的方式 useServerPrepStmts=false useCursorFetch=true useCompression= ...
- IntelliJ IDEA SpringBoot 使用第三方Tomcat以及部署
花了半天时间终于成功,记录以备查阅. 一.第三方Tomcat部署 部署部分参考的是:把spring-boot项目部署到tomcat容器中 目标:把spring-boot项目按照平常的web项目一样发布 ...
- NYOJ 116 士兵杀敌二
士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的. 小工是南将军手下的军师,南将军经常 ...
- Longest Valid Parentheses——仍然需要认真看看(动态规划)
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- vue利用watch侦听对象具体的属性 ~ 巧用计算属性computed做中间层
有时候需要侦听某个对象具体的属性,可以按下面案例进行: <template> <div> <input type="text" v-model=&qu ...
- Qt应用如何发布
原文请看:http://www.cnblogs.com/ungshow/archive/2010/10/10/1847082.html 通常情况下,使用Qt开发应用都是采用动态编译的方式来进行发布,发 ...