题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)。

题目描述

请你求出第n个斐波那契数列的数mod(或%)2^31之后的值。并把它分解质因数。

输入输出格式

输入格式:

n

输出格式:

把第n个斐波那契数列的数分解质因数。

输入输出样例

输入样例#1:

5
输出样例#1:

5=5
输入样例#2:

6
输出样例#2:

8=2*2*2

说明

n<=48

题解:质因数分解

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std; int n,cnt,flag;
long long f[];
long long mod; int chai(long long x){
for(long long i=;i*i<=x;i++){
if(x%i==){
while(x%i==){
if(flag)
printf("*%d",i);
else {
flag=true;
printf("%d",i);
}
x/=i;
}
}
}
if(x>){
if(flag)printf("*%d",x);
else printf("%d",x);
}
} int main(){
scanf("%d",&n);
f[]=f[]=;mod=pow(,);
for(int i=;i<=n;i++){
f[i]=(f[i-]%mod+f[i-]%mod)%mod;
}
printf("%d=",f[n]);
chai(f[n]);
return ;
}

洛谷 P2626 斐波那契数列(升级版)的更多相关文章

  1. 洛谷——P2626 斐波那契数列(升级版)

    P2626 斐波那契数列(升级版) 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ ...

  2. 洛谷——P2626 斐波那契数列(升级版)矩阵

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  3. [洛谷P2626]斐波那契数列(升级版)

    题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值.并把它分解质因数. 题解:乱搞 卡点:1.忘记取模 C++ Code: #include<cstdio> #i ...

  4. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  5. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  6. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  7. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

  8. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  9. 洛谷P1962 斐波那契数列题解

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

随机推荐

  1. 一种BIM缺失多态性介导的酪氨酸激酶抑制剂的耐药性

    论文名称:A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyro ...

  2. 20145229吴姗珊逆向BOF实践

    20145229吴姗珊逆向BOF实践 实践 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. ...

  3. win10安装z3求解器

    因为课程要求,我不得不接触求解器,之前有在ubuntu上装过一个叫stp的求解器,没怎么用: 今天在我的电脑(win10)上上装了一款更方便的求解器---z3,下面先详细介绍一下怎么安装和配置: 1. ...

  4. python3给socket模块设置代理

    最近需要在公司学习socket编程,但是不能直接连接外网,需要设置一个代理才能正常访问.报错示例: import socket def blocking(wd): sock = socket.sock ...

  5. Spring注解(事务)

    spring操作数据库 jdbc <!-- https://mvnrepository.com/artifact/org.springframework/spring-jdbc --> & ...

  6. 主机不能访问虚拟机web服务的问题

    虚拟机是CentOs 7 iptables -Fiptables -P INPUT ACCEPT 参考:http://blog.csdn.net/abnereel/article/details/41 ...

  7. 从reduce函数说起...

    reduce函数:  方法接收一个函数作为累加器(accumulator),数组中的每个值(从左到右)开始缩减,最终为一个值, 最终返回的要看函数内部return的内容. 1. 累加器: var ar ...

  8. WebUploader 解决文件多次上传和删除上传文件的问题

    文件多次上传有两种情况: 1. 上传前的多次选择 2. 上传成功后,再次选择 其实API上,已经有了介绍了,不知道为什么有同学还是不知道如何做,我来抛砖引玉吧. 配置项: duplicate {Boo ...

  9. jdbc例子

    public class ConnMysql { public static void main(String[] args) throws ClassNotFoundException, SQLEx ...

  10. Java_WebKit

    1. http://tieba.baidu.com/p/2807579276 下载地址: http://qtjambi.org/downloads https://qt.gitorious.org/q ...