CNN学习笔记:卷积运算

边缘检测

    

卷积

  卷积是一种有效提取图片特征的方法。一般用一个正方形卷积核,遍历图片上的每一个像素点。图片与卷积核重合区域内相对应的每一个像素值乘卷积核 、内相对应点的权重,然后求和,再加上偏置后,最后得到输出图片中的一个像素值。

卷积操作的作用

  卷积是一种局部操作,通过一定大小的卷积核作用于局部图像区域获得图像的局部信息。

  我们现在使用三种边缘卷积核(亦称滤波器),整体边缘滤波器、横向边缘滤波器和纵向边缘滤波器。

  

  试想,若原图像素(x, y)处可能存在物体边缘,则其四周(x−1,y),(x+1,y),(x, y−1),(x, y+ 1)处像素值应与(x, y)处有显著差异。此时,如作用以整体边缘滤波器Ke,可消除四周像素值差异小的图像区域而保留显著差异区域,以此可检测出物体边缘信息。同理,类似于Kh和Kv的横向、纵向边缘滤波器可以保留横向、纵向的边缘信息。
  事实上,卷积网络中的卷积核参数是通过网络训练学出的,除了可以学到类似的横向、纵向边缘滤波器,还可以学到任意角度的边缘滤波器。当然,不仅如此,检测颜色、形状、纹理等众多的基本模式的滤波器都可以包含在一个足够复杂的深层卷积神经网络中。

对立方体卷积

  所谓的立方体卷积是指对多通道色彩的图形进行卷积操作。

  

  我们需要有对应通道数的卷积层,此处为3层,每一层处理一个通道,按照卷积操作执行,最后会生成27个数据,将其合计后填入输出矩阵中即可。

填充Padding

  在卷积操作中,卷积后的图形将会小于原始图形,并且图形缩小会导致丢失一些边缘信息,我们可以卷积操作之前对输入图形周围进行全零填充,来保证输出图形的尺寸和输入图形的尺寸一致。

  

设置步长

  在上述的卷积过程中,卷积层在原始图形中沿着水平方向每次移动一格,最后输出图形的大小为5*5,当然我们也可以设置移动的间隔,比如为2.这样生成的输出图形的大小就会减小到3*3。

  

  计算公式是这样的:(原始图形大小+2*填充厚度)/步长+1.

CNN学习笔记:卷积运算的更多相关文章

  1. CNN学习笔记:卷积神经网络

    CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作 ...

  2. 卷积神经网络(CNN)学习笔记1:基础入门

    卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Vie ...

  3. CNN学习笔记:目标函数

    CNN学习笔记:目标函数 分类任务中的目标函数 目标函数,亦称损失函数或代价函数,是整个网络模型的指挥棒,通过样本的预测结果与真实标记产生的误差来反向传播指导网络参数学习和表示学习. 假设某分类任务共 ...

  4. CNN学习笔记:全连接层

    CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...

  5. CNN学习笔记:池化层

    CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见 ...

  6. CNN学习笔记:神经网络表示

    CNN学习笔记:神经网络表示 双层神经网络模型 在一个神经网络中,当你使用监督学习训练它的时候,训练集包含了输入x还有目标输出y.隐藏层的含义是,在训练集中,这些中间节点的真正数值,我们是不知道的,即 ...

  7. CNN学习笔记:正则化缓解过拟合

    CNN学习笔记:正则化缓解过拟合 过拟合现象 在下图中,虽然绿线完美的匹配训练数据,但太过依赖,并且与黑线相比,对于新的测试数据上会具有更高的错误率.虽然这个模型在训练数据集上的正确率很高,但这个模型 ...

  8. CNN学习笔记:批标准化

    CNN学习笔记:批标准化 Batch Normalization Batch Normalization, 批标准化, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法. 在神经网络的训练过 ...

  9. CNN学习笔记:激活函数

    CNN学习笔记:激活函数 激活函数 激活函数又称非线性映射,顾名思义,激活函数的引入是为了增加整个网络的表达能力(即非线性).若干线性操作层的堆叠仍然只能起到线性映射的作用,无法形成复杂的函数.常用的 ...

随机推荐

  1. pom打包参数选择

    pom.xml配置 <profiles> <profile> <id>dev</id> <properties> <token> ...

  2. JS刷新页面后滚动条的位置不变

    有时候,在网页中点击了页面中的按钮或是刷新了页面后,页面滚动条又 会回到顶部,想看后面的记录就又要拖动滚动条,或者要按翻页键,非常不方便,想在提交页面或者在页面刷新的时候仍然保持滚动条的位置不变,最好 ...

  3. VUE:使用vue-cli脚手架无法安装npm install axios 的巨坑

    使用命令 npm install axios 安装axios可能会报错,无法引用, 这个时候使用淘宝的镜像cnpm安装就可以了 cnpm install axios 如果没有安装cnpm,执行以下命令 ...

  4. Android音频文件浏览+音频播放

    该Demo执行后,会显示全部你sd卡上的音乐文件列表, 并能够点击列表选择某一首歌曲进行播放. 执行效果: 点击download出现: 然后点击歌曲调用系统播放器播放. 源码: activity_au ...

  5. 【转】MySQL常用命令总结

    http://blog.csdn.net/qq_33850438/article/details/52144686 MySQL常用的基本操作,以下都是MySQL 5.0下测试通过首先说明下,记住在每个 ...

  6. (转)使用 PyInstaller 把python程序 .py转为 .exe 可执行程序

    最近使用Python为项目开发一款绘图工具(绘出 声场三维模型).因为希望能把Python脚本发布为脱离Python平台运行的可执行程序,比如单个的exe文件.PyInstaller恰满足这个需求.本 ...

  7. linux配置sftp用户的chroot步骤(用户的sftp根文件夹)

    1.编辑ssh中的sftp的配置,命令可能是:vi /etc/ssh/sshd_config 在这个文件里最后增加 #限制sftp组的用户使用sftp时在自己的home文件夹下 Match Group ...

  8. activeMQ "HelloWorld"实现

    本文主要介绍activeMQ在应用程序中是如何使用的,同个两个实例进行说明,这两个实例分别针对P2P模式和Pub/Sub模式. 开发环境 操作系统:Ubuntu 16.10 开发平台:Eclipse  ...

  9. angualar入门学习-- 自定义指令 指令编译执行过程

    3个阶段: 一.加载阶段 加载angular.js的源码,找到ng-app确定应用边界范围. 二.编译阶段 compile 查找所有指令,保存在一个列表中 对所有指令按优先级(property属性值) ...

  10. angularJS中的ng-show、ng-if指令

    angularJS中的ng-show.ng-hide.ng-if指令都可以用来控制dom元素的显示或隐藏. 1. ng-show和ng-hide 根据所给表达式的值来显示或隐藏HTML元素.元素会渲染 ...