ANN神经网络——Sigmoid 激活函数编程练习 (Python实现)

# ----------
#
# There are two functions to finish:
# First, in activate(), write the sigmoid activation function.
# Second, in update(), write the gradient descent update rule. Updates should be
# performed online, revising the weights after each data point.
#
# ----------
import numpy as np
class Sigmoid:
"""
This class models an artificial neuron with sigmoid activation function.
"""
def __init__(self, weights = np.array([1])):
"""
Initialize weights based on input arguments. Note that no type-checking
is being performed here for simplicity of code.
"""
self.weights = weights
# NOTE: You do not need to worry about these two attribues for this
# programming quiz, but these will be useful for if you want to create
# a network out of these sigmoid units!
self.last_input = 0 # strength of last input
self.delta = 0 # error signal
def activate(self, values):
"""
Takes in @param values, a list of numbers equal to length of weights.
@return the output of a sigmoid unit with given inputs based on unit
weights.
"""
# YOUR CODE HERE
# First calculate the strength of the input signal.
strength = np.dot(values, self.weights)
self.last_input = strength
# TODO: Modify strength using the sigmoid activation function and
# return as output signal.
# HINT: You may want to create a helper function to compute the
# logistic function since you will need it for the update function.
result = self.logistic(strength)
return result
def logistic(self,strength):
return 1/(1+np.exp(-strength))
def update(self, values, train, eta=.1):
"""
Takes in a 2D array @param values consisting of a LIST of inputs and a
1D array @param train, consisting of a corresponding list of expected
outputs. Updates internal weights according to gradient descent using
these values and an optional learning rate, @param eta.
"""
# TODO: for each data point...
for X, y_true in zip(values, train):
# obtain the output signal for that point
y_pred = self.activate(X)
# YOUR CODE HERE
# TODO: compute derivative of logistic function at input strength
# Recall: d/dx logistic(x) = logistic(x)*(1-logistic(x))
dx = self.logistic(self.last_input)*(1 - self.logistic(self.last_input) )
print ("dx{}:".format(dx))
print ('\n')
# TODO: update self.weights based on learning rate, signal accuracy,
# function slope (derivative) and input value
delta_w = eta * (y_true - y_pred) * dx * X
print ("delta_w:{} weight before {}".format(delta_w, self.weights))
self.weights += delta_w
print ("delta_w:{} weight after {}".format(delta_w, self.weights))
print ('\n')
def test():
"""
A few tests to make sure that the perceptron class performs as expected.
Nothing should show up in the output if all the assertions pass.
"""
def sum_almost_equal(array1, array2, tol = 1e-5):
return sum(abs(array1 - array2)) < tol
u1 = Sigmoid(weights=[3,-2,1])
assert abs(u1.activate(np.array([1,2,3])) - 0.880797) < 1e-5
u1.update(np.array([[1,2,3]]),np.array([0]))
assert sum_almost_equal(u1.weights, np.array([2.990752, -2.018496, 0.972257]))
u2 = Sigmoid(weights=[0,3,-1])
u2.update(np.array([[-3,-1,2],[2,1,2]]),np.array([1,0]))
assert sum_almost_equal(u2.weights, np.array([-0.030739, 2.984961, -1.027437]))
if __name__ == "__main__":
test()
OUTPUT
Running test()...
dx0.104993585404:
delta_w:[-0.0092478 -0.01849561 -0.02774341] weight before [3, -2, 1]
delta_w:[-0.0092478 -0.01849561 -0.02774341] weight after [ 2.9907522 -2.01849561 0.97225659]
dx0.00664805667079:
delta_w:[-0.00198107 -0.00066036 0.00132071] weight before [0, 3, -1]
delta_w:[-0.00198107 -0.00066036 0.00132071] weight after [ -1.98106867e-03 2.99933964e+00 -9.98679288e-01]
dx0.196791859198:
delta_w:[-0.02875794 -0.01437897 -0.02875794] weight before [ -1.98106867e-03 2.99933964e+00 -9.98679288e-01]
delta_w:[-0.02875794 -0.01437897 -0.02875794] weight after [-0.03073901 2.98496067 -1.02743723]
All done!
ANN神经网络——Sigmoid 激活函数编程练习 (Python实现)的更多相关文章
- ANN神经网络——实现异或XOR (Python实现)
一.Introduction Perceptron can represent AND,OR,NOT 用初中的线性规划问题理解 异或的里程碑意义 想学的通透,先学历史! 据说在人工神经网络(artif ...
- 目前所有的ANN神经网络算法大全
http://blog.sina.com.cn/s/blog_98238f850102w7ik.html 目前所有的ANN神经网络算法大全 (2016-01-20 10:34:17) 转载▼ 标签: ...
- 【python实现卷积神经网络】激活层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- BP神经网络求解异或问题(Python实现)
反向传播算法(Back Propagation)分二步进行,即正向传播和反向传播.这两个过程简述如下: 1.正向传播 输入的样本从输入层经过隐单元一层一层进行处理,传向输出层:在逐层处理的过程中.在输 ...
- OpenCV——ANN神经网络
ANN-- Artificial Neural Networks 人工神经网络 //定义人工神经网络 CvANN_MLP bp; // Set up BPNetwork's parameters Cv ...
- 神经网络BP算法C和python代码
上面只显示代码. 详BP原理和神经网络的相关知识,请参阅:神经网络和反向传播算法推导 首先是前向传播的计算: 输入: 首先为正整数 n.m.p.t,分别代表特征个数.训练样本个数.隐藏层神经元个数.输 ...
- 神经网络的训练和测试 python
承接上一节,神经网络需要训练,那么训练集来自哪?测试的数据又来自哪? <python神经网络编程>一书给出了训练集,识别图片中的数字.测试集的链接如下: https://raw.githu ...
- 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:TensorFlow与神经网络的实现
import tensorflow as tf import numpy as np ''' 初始化运算图,它包含了上节提到的各个运算单元,它将为W,x,b,h构造运算部件,并将它们连接 起来 ''' ...
- 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:使用TensorFlow和Keras开发高级自然语言处理系统——LSTM网络原理以及使用LSTM实现人机问答系统
!mkdir '/content/gdrive/My Drive/conversation' ''' 将文本句子分解成单词,并构建词库 ''' path = '/content/gdrive/My D ...
随机推荐
- 【算法笔记】B1034 有理数四则运算
1034 有理数四则运算 (20 分) 本题要求编写程序,计算 2 个有理数的和.差.积.商. 输入格式: 输入在一行中按照 a1/b1 a2/b2 的格式给出两个分数形式的有理数,其中分子和分母 ...
- dedicated bearer
Session Initiation Protocol (SIP) Basic Call Flow ExamplesRFC3665 intuitive, done. PDF] TS 123 401 ...
- 使用Appium-Desktop捕获APP元素控件实现自动化控制
使用Appium捕获APP的元素控件 实现自动化控制 我是用的是华为P20手机进行测试,为了映射出它的adb端口,需再去官网下载安装一个华为手机助手,然后将手机调成开发者模式,连接时选择传输文件模式. ...
- nginx常用配置2
## 一.Nginx中虚拟主机配置 ### 1.基于域名的虚拟主机配置 1.修改宿主机的hosts文件(系统盘/windows/system32/driver/etc/HOSTS) linux : ...
- TortoiseGit学习系列之Git和TortoiseGit的区别
不多说,直接上干货! Git和TortoiseGit的区别: TortoiseGit的安装和使用依赖Git.
- 消息摘要java.security.MessageDigest
这是一种与消息认证码结合使用以确保消息完整性的技术.主要使用单向散列函数算法,可用于检验消息的完整性,和通过散列密码直接以文本形式保存等,目前广泛使用的算法有MD4.MD5.SHA-1,jdk1.5对 ...
- unity优化
1. 更新不透明贴图的压缩格式为ETC 4bit,因为android市场的手机中的GPU有多种,每家的GPU支持不同的压缩格式,但他们都兼容ETC格式, 2. 对于透明贴图,我们只能选择RGBA 16 ...
- Android如何避免输入法弹出时遮挡住按钮或输入框
在AndroidManifest.xml中为对应的activity添加android:windowSoftInputMode="adjustResize" 在AndroidMani ...
- Android Studio修改程序包名
我也是在网上看到的,并且这个方法只能这么修改:cn.example.xxx修改为cn.example.yyy ,修改到根目录下... refactor---rename修改 然后clean,buil ...
- js中有关类、对象的增强函数
javascript中继承的实现 基础实现 function Range(from,to){ this.from =from; this.to =to; } Range.prototype = { i ...