E - The Values You Can Make

Description

Pari wants to buy an expensive chocolate from Arya. She has n coins,

the value of the i-th coin is ci. The price of the chocolate is k, so Pari

will take a subset of her coins with sum equal to k and give it to Arya.

Looking at her coins, a question came to her mind: after giving the

coins to Arya, what values does Arya can make with them? She is

jealous and she doesn't want Arya to make a lot of values. So she

wants to know all the values x, such that Arya will be able to make

xusing some subset of coins with the sum k.

Formally, Pari wants to know the values x such that there exists a

subset of coins with the sum k such that some subset of this subset

has the sum x, i.e. there is exists some way to pay for the chocolate,

such that Arya will be able to make the sum x using these coins.

Input

The first line contains two integers n and k (1  ≤  n, k  ≤  500) — the

number of coins and the price of the chocolate, respectively.

Next line will contain n integers c1, c2, ..., cn (1 ≤ ci ≤ 500) — the

values of Pari's coins.It's guaranteed that one can make value k

using these coins.

Output

First line of the output must contain a single integer q— the number

of suitable values x. Then print q integers in ascending order — the

values that Arya can make for some subset of coins of Pari that pays

for the chocolate.

Sample Input

Input
6 18
5 6 1 10 12 2
Output
16
0 1 2 3 5 6 7 8 10 11 12 13 15 16 17 18
Input
3 50
25 25 50
Output
3
0 25 50

题意:

   给你n个数和k,问n个数所有能构成k的子集合中所有的可能的和是多少?

分析:

dp[i][j]表示当前和是i能否构成j,如果dp[i][j]是可以构成的话,

那由于是子集合的关系dp[i+m][j]和dp[i+m][j+m]也可以构成。

dp:  dp[i][j]=dp[i+m][j]+dp[i+m][j+m];

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[][];
int a[];
int main()
{
int n,k,m;
scanf("%d%d",&n,&k);
memset(dp,,sizeof(dp));
dp[][]=;
for(int i=;i<n;i++)
{
scanf("%d",&m);
for(int a=k;a>=m;a--)
{
for(int b=;b+m<=k;b++)
{
if(dp[a-m][b])
{
dp[a][b]=;
dp[a][b+m]=;
}
}
} }
int len=;
for(int b=;b<=k;b++)
if(dp[k][b])
{
a[len]=b;
len++;
} sort(a,a+len);
printf("%d\n",len);
for(int i=;i<len-;i++)
printf("%d ",a[i]);
printf("%d\n",a[len-]);
return ;
}

codeforces 360 E - The Values You Can Make的更多相关文章

  1. [codeforces 360]A. Levko and Array Recovery

    [codeforces 360]A. Levko and Array Recovery 试题描述 Levko loves array a1, a2, ... , an, consisting of i ...

  2. codeforces 360 D - Remainders Game

    D - Remainders Game Description Today Pari and Arya are playing a game called Remainders. Pari choos ...

  3. 套题 codeforces 360

    A题:Opponents 直接模拟 #include <bits/stdc++.h> using namespace std; ]; int main() { int n,k; while ...

  4. codeforces 688E E. The Values You Can Make(dp)

    题目链接: E. The Values You Can Make time limit per test 2 seconds memory limit per test 256 megabytes i ...

  5. 【43.75%】【codeforces 688E】The Values You Can Make

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  6. codeforces 688 E. The Values You Can Make(01背包+思维)

    题目链接:http://codeforces.com/contest/688/problem/E 题解:设dp[s1][s2]表示s1状态下出现s2是否合理.那么s1显然可以更具01背包来得到状态.首 ...

  7. codeforces 360 C

    C - NP-Hard Problem Description Recently, Pari and Arya did some research about NP-Hard problems and ...

  8. codeforces 360 C - NP-Hard Problem

    原题: Description Recently, Pari and Arya did some research about NP-Hard problems and they found the  ...

  9. codeforces 360 B

    B - Levko and Array 题目大意:给你你个长度为n的数列a,你最多改变k个值,max{ abs ( a[ i + 1] - a[ i ] ) } 的最小值为多少. 思路:这个题很难想到 ...

随机推荐

  1. 备份了我的CSDN博客

    刚用cnblogs的“博客搬家”功能把我此前在csdn发的所有文章都备份过来了. 发现cnblogs的博客备份功能比较好的一点是——文章的发表时间和原来的一致! 上次在CSDN发博客的时间是2015- ...

  2. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  3. [不断更新]iOS开发常用技术

    1.修改默认初始化方法 构建便利构造器 修改默认init初始化 .m文件中 @implementation 类名 -(id)init{ self=[super init]; printf(" ...

  4. js获取cookie

    js获取cookie 之前用jQuery.cookie来获取cookie,虽然简单,但是项目上又多引用了一个插件,总觉得不太好,下面是我封装的js原生获取cookie的函数. function get ...

  5. Redis Sentinel集群配置中的一些细节

    今天在配置Redis集群,用作Tomcat集群的缓存共享.关于Redis集群的配置网上有很多文章,这里只是记录一下我在配置过程中遇到的一些小的细节问题. 1. 关于Protected Mode的问题 ...

  6. pem转换成der

    openssl x509 -in xxxxx.pem -inform PEM -out xxxx.der -outform DER [root@NB Desktop]# file xxxx.der

  7. Linux学习内容

    Linux学习要点(转载自红联) 一.学习Linux的基本要求1. 掌握至少50个以上的常用命令. 2. 熟悉Gnome/KDE等X-windows桌面环境操作 . 3. 掌握.tgz..rpm等软件 ...

  8. android基础知识进阶

    1.android Activity的生命周期 http://blog.csdn.net/hpoi/article/details/4629065 2.android Service的生命周期 htt ...

  9. 上传图片预览JS脚本 Input file图片预览的实现示例

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. 如何实现VoIP中大并发应用

    后台服务器实现高并发方式: 说明: 黄色皆为运营商或第三方对接系统的VoIP设备等. 前置服务器A与B为热备容灾模式,当A异常,立即跳转到B. 应用服务器做实时容灾处理. 数据库做实时容灾处理. 媒体 ...