使用python进行数据处理的实例(数据为某公司HR部门关于员工信息的部分摘录,kaggle上面的一次赛题)

https://www.kaggle.com/c/kfru-dbm-hr-analytics

该实例是根据其他所给属性预测员工是否会离职,代码实现如下所示


import pandas as pd
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
from sklearn.decomposition import PCA def hr_preprocessing(sl=False,le=False,npr=False,amh=False,tsc=False,wa=False,pl5=False,dp=False,slr=False,lower_id=False,ld_n=1):
df=pd.read_csv('C:\\Users\\Administrator\Desktop\\network\\HR.csv')
#1 清洗数据,根据探索性数据分析出的结果来去掉空值
df=df.dropna(subset=['satisfaction_level','last_evaluation'])
df=df[df['satisfaction_level']<=1][df['salary']!='nme'] #2 得到标注
label=df['left']
df=df.drop('left',axis=1) #3 特征选择(因为本文的特征本来就不多,暂时不做) # 4 特征处理(归一化,标准化,降维)
scaler_lst=[sl,le,npr,amh,tsc,wa,pl5]
column_lst = ["satisfaction_level", "last_evaluation", "number_project",
"average_monthly_hours", "time_spend_company", "Work_accident",
"promotion_last_5years"]
for i in range(len(scaler_lst)):
if not scaler_lst[i]:
df[column_lst[i]]=MinMaxScaler().fit_transform(df[column_lst[i]].values.reshape(-1,1)).reshape(1,-1)[0]
else:
df[column_lst[i]]=StandardScaler().fit_transform(df[column_lst[i]].values.reshape(-1,1)).reshape(1,-1)[0] #针对离散值的处理
scaler_lst=[slr,dp]
column_lst=['salary','department']
for i in range(len(scaler_lst)):
if not scaler_lst[i]:
if column_lst[i]=='salary':
df[column_lst[i]]=[map_salary(s)for s in df['salary'].values]
else:
df[column_lst[i]]=LabelEncoder().fit_transform(df[column_lst[i]])
df[column_lst[i]]=MinMaxScaler().fit_transform(df[column_lst[i]].values.reshape(-1,1)).reshape(1,-1)[0]
else:
df=pd.get_dummies(df,columns=[column_lst[i]])
if lower_id:
return PCA(n_components=ld_n).fit_transform(df.values),label
return df,label d=dict([('low',0),('medium',1),('high',2)])
def map_salary(s):
return d.get(s,0) #建模
def hr_modeling_nn(features,label):
from sklearn.model_selection import train_test_split
#sklearn中没有可以一次性将数据划分成验证集、训练集、测试集的包,所以需要进行两步划分
f_v=features.values
l_v=label.values
X_tt,X_validation,Y_tt,Y_validation=train_test_split(f_v,l_v,test_size=0.2)
X_train,X_test,Y_train,Y_test=train_test_split(X_tt,Y_tt,test_size=0.25)
#print(len(X_train),len(X_test),len(X_validation)) #分类
from sklearn.metrics import accuracy_score,recall_score,f1_score
from sklearn.neighbors import NearestNeighbors,KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB,BernoulliNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import GradientBoostingClassifier models=[]
models.append(('KNN',KNeighborsClassifier(n_neighbors=3)))
models.append(('GaussianNB',GaussianNB()))
models.append(('BernoulliNB',BernoulliNB()))
models.append(('DecisionTreeGini',DecisionTreeClassifier()))
models.append(('DecisionTreeEntropy',DecisionTreeClassifier(criterion='entropy')))
models.append(('SVM:',SVC(C=1000)))
models.append(('OriginalRandomForest',RandomForestClassifier()))
models.append(('RandomForest',RandomForestClassifier(n_estimators=11,max_features=None)))
models.append(('Adaboost',AdaBoostClassifier(n_estimators=100)))
models.append(('LogisticRegression',LogisticRegression(C=1000,tol=1e-10,solver='sag',max_iter=10000)))
models.append(('GBDT',GradientBoostingClassifier(max_depth=6,n_estimators=100))) for clf_name ,clf in models:
clf.fit(X_train,Y_train)
xy_list=[(X_train,Y_train),(X_validation,Y_validation),(X_test,Y_test)]
for i in range(len(xy_list)):
X_part=xy_list[i][0]
Y_part=xy_list[i][1]
Y_pred=clf.predict(X_part)
print(i)
print(clf_name,'-ACC',accuracy_score(Y_part,Y_pred))
print(clf_name,'-REC:',recall_score(Y_part,Y_pred))
print(clf_name,'-F1:',f1_score(Y_pred,Y_part)) #回归
def regr_t(features,label):
print('X',features)
print('Y',label)
from sklearn.linear_model import LinearRegression,Ridge,Lasso
regr=Ridge(alpha=1)
regr.fit(features.values,label.values)
Y_pred=regr.predict(features.values)
print('Coef:',regr.coef_)
from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
print('MSE:',mean_squared_error(label.values,Y_pred))
print('MAE:',mean_absolute_error(label.values,Y_pred))
print('R2:',r2_score(label.values,Y_pred)) def main():
features,label=hr_preprocessing()
hr_modeling_nn(features,label)
regr_t(features[['number_project','average_monthly_hours']],features['last_evaluation'])
if __name__=='__main__':
main()

来源:https://blog.csdn.net/weixin_39667003/article/details/85632885

Python数据处理实例的更多相关文章

  1. Python 数据处理库pandas教程(最后附上pandas_datareader使用实例)

    0 简单介绍 pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有 ...

  2. Python 数据处理库 pandas 入门教程

    Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...

  3. Python 数据处理之对 list 数据进行数据重排(为连续的数字序号)

    Python 数据处理之对 list 数据进行数据重排(为连续的数字序号) # user ID 序号重新排,即,原来是 1,3,4,6 ,排为 1,2,3,4 # item ID 序号重新排,too ...

  4. Python数据处理pdf (中文版带书签)、原书代码、数据集

    Python数据处理 前言 xiii第1 章 Python 简介 11.1 为什么选择Python 41.2 开始使用Python 41.2.1 Python 版本选择 51.2.2 安装Python ...

  5. 最全总结 | 聊聊 Python 数据处理全家桶(Sqlite篇)

    1. 前言 上篇文章 聊到 Python 处理 Mysql 数据库最常见的两种方式,本篇文章继续说另外一种比较常用的数据库:Sqlite Sqlite 是一种 嵌入式数据库,数据库就是一个文件,体积很 ...

  6. 最全总结 | 聊聊 Python 数据处理全家桶(Redis篇)

    1. 前言 前面两篇文章聊到了 Python 处理 Mysql.Sqlite 数据库常用方式,本篇文章继续说另外一种比较常用的数据存储方式:Redis Redis:Remote Dictionary ...

  7. 最全总结 | 聊聊 Python 数据处理全家桶(Memcached篇)

    1. 前言 本篇文章继续继续另外一种比较常用的数据存储方式:Memcached Memcached:一款高性能分布式内存对象缓存系统,通过 内存缓存,以减少数据库的读取,从而分担数据库的压力,进而提高 ...

  8. python基础——实例属性和类属性

    python基础——实例属性和类属性 由于Python是动态语言,根据类创建的实例可以任意绑定属性. 给实例绑定属性的方法是通过实例变量,或者通过self变量: class Student(objec ...

  9. python 发送邮件实例

    留言板回复作者邮件提醒 -----------2016-5-11 15:03:58-- source:python发送邮件实例

随机推荐

  1. 【微信小游戏】文件系统,远程加载资源打破4M限制

    一.前提 微信小游戏,对游戏包体的大小有严格是限制,上传文件大小<4M,但是本地缓存文件有50M空间,也就是说我们可以将一些资源放到网上,然后缓存到本地. 二.官方概念 文件系统 文件系统是小程 ...

  2. 将几何画板x轴坐标值换成弧度制的方法

    大家在学习数学的过程中,都会遇到函数,这个时候大家都会遇到函数图像.对于函数图像我们一般都会通过先建立坐标系,然后让图像呈现在坐标系中.函数的种类有很多,三角函数就是其中之一,在绘制三角函数图像时,我 ...

  3. Alpha matting算法发展

    一.抠图算法简介 Alpha matting算法研究的是如何将一幅图像中的前景信息和背景信息分离的问题,即抠图.这类问题是数字图像处理与数字图像编辑领域中的一类经典问题,广泛应用于视频编缉与视频分割领 ...

  4. 55、Android网络图片 加载缓存处理库的使用

         先来一个普通的加载图片的方法. import android.annotation.SuppressLint; import android.app.Activity; import and ...

  5. 局域网查看工具Lansee注册码

    相信好多人为查看局域网IP发愁,今天给大家推荐一个工具 lansee 猛戳下载

  6. 160801、BlockingQueue处理多线程

    前面介绍过spring的taskExecutor,今天介绍一个jdk里处理多线程的方法 一.spring的配置文件(注入bean) <bean id="cmsClickButtonMn ...

  7. golang 开发过程中的坑

    1. chan数据读取写入 正常情况下chan读取写入都没有问题,但是如果chan关闭之后会出现问题 所以读取chan数据的时候需要增加chan是否关闭的判断 c := make(chan ) v, ...

  8. 第二课作业——redis常用命令

    第二课时作业 静哥 by 2016.2.23~2016.2.22   [作业描述] 1.key string list hash结构中,每个至少完成5个命令,包含插入 修改 删除 查询,list 和h ...

  9. Redis 教程

    http://www.runoob.com/redis/redis-tutorial.html Redis系列(一)--安装.helloworld以及读懂配置文件 再开个redis系列,本系列打算不详 ...

  10. GetWindowThreadProcessId

    函数功能:该函数返回创建指定窗口线程的标识和创建窗口的进程的标识符,后一项是可选的. 函数原型:DWORD GetWindowThreadProcessld(HWND hwnd,LPDWORD lpd ...