题意:一个人在坐标A,要前往坐标B的位置。可以往左或往右走a,b,a+b个单位,求到达B的最小步数。

分析:扩展欧几里得算法求解线性方程的套路不变。令C=fabs(A-B),c = a+b, 扩展gcd分别求 ax+by=C ; ax+cy = C : bx+cy = C的最小|x|+|y|。求min{|x|+|y|}需要一点思考。

对于线性方程ax+by=c,设d = gcd(a,b) ,若方程有解,则必须d | c,特解为 (x0,y0) = ( xx*c/d,yy*c/d) 。设am = a/d, bm = b/d。

此时方程的通解为 x = x0+ k*bm ; y = y0 - k*am。则需要求的是 res = min{ |x0 + k*bm| + |y0 - k*am| }。

设直线L1:y1 = x0 + bm*k ; L2:y2 = y0 - am*k。

则|y1|+|y2| 的最小值一定出现在y1=0或y2=0,即k1=-x0/bm 或 k2 = y0/am 时(数形结合),但由于k是整数,所以不一定y1、y2能取到0。所以枚举区间[-x0/bm-1, -x0/bm+1]和[y0/am -1 , y0/am +1]的 k 对应值中的最小值。

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
typedef long long LL;
const int maxn = 1e5+; LL ABS(LL a)
{
return a>=?a :-a;
} LL Exgcd(LL a,LL b,LL &x,LL &y ) {
if ( b == ) {
x = ;
y = ;
return a;
}
LL d = Exgcd(b, a%b, x, y), temp = x;
x = y;
y = temp-a/b*y;
return d;
} LL gao(LL a,LL b,LL c) //ax+by=c
{
LL x,y;
LL d = Exgcd(a,b,x,y);
if(c%d) return -;
LL am = a/d, bm = b/d;
x *=c/d, y*= c/d; //特解
LL ans= ABS(x)+ABS(y);
for(int i=-x/bm-;i<=-x/bm+;i++){
LL X=x+bm*i;
LL Y=y-am*i;
if(i){
LL tmp=ABS(X)+ABS(Y);
if(tmp<ans) ans=tmp;
}
}
for(int i=y/am-;i<=y/am+;i++){
LL X=x+bm*i;
LL Y=y-am*i;
if(i){
LL tmp=ABS(X)+ABS(Y);
if(tmp<ans) ans=tmp;
}
}
return ans;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
LL a,b,A,B,k;
int T; scanf("%d",&T);
while(T--){
scanf("%lld %lld %lld %lld",&A, &B, &a, &b);
LL C = ABS(A-B),c = a+b;
LL t1 =gao(a,b,C), t2 = gao(a,c,C) ,t3 = gao(b,c,C);
if(t1==- && t2==- && t3==-){
puts("-1");
continue;
}
LL ans=;
if(t1!=-) ans = min(t1,ans);
if(t2!=-) ans = min(t2,ans);
if(t3!=-) ans = min(t3,ans);
printf("%lld\n",ans);
}
return ;
}

ZOJ - 3593 One Person Game (扩展欧几里得)的更多相关文章

  1. ZOJ 3593.One Person Game-扩展欧几里得(exgcd)

    智障了,智障了,水一水博客. 本来是个水题,但是for循环遍历那里写挫了... One Person Game Time Limit: 2 Seconds      Memory Limit: 655 ...

  2. ZOJ 3593 One Person Game(拓展欧几里得求最小步数)

    One Person Game Time Limit: 2 Seconds      Memory Limit: 65536 KB There is an interesting and simple ...

  3. ZOJ 3609 Modular Inverse(扩展欧几里得)题解

    题意:求乘法逆元最小正正数解 思路:a*x≡1(mod m),则称x 是 a 关于 m 的乘法逆元,可以通过解a*x + m*y = 1解得x.那么通过EXGcd得到特解x1,最小正解x1 = x1 ...

  4. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  5. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

  6. UVA 10090 Marbles 扩展欧几里得

    来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...

  7. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  8. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  9. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

随机推荐

  1. zend Studio10.6.2汉化

    选择Help菜单 -> Install New Software... 在Work with框中复制此地址: http://archive.eclipse.org/technology/babe ...

  2. 我的直播demo

    推流工具: ffmpeg 接收/转发流工具: nginx-rtmp 在线播放工具: video.js -------------------------------------- demo地址: ht ...

  3. C语言 百炼成钢25

    /* 题目61:编写一个名为removestring的函数,该函数用于从一个字符串中删除一定量的字符. 该函数接受三个参数: 第1参数代表源字符串 第2参数代表需要删除字符的起始位置(位置从0开始) ...

  4. 第二百一十九节,jQuery EasyUI,DateTimeBox(日期时间输入框)组件

    jQuery EasyUI,DateTimeBox(日期时间输入框)组件 学习要点: 1.加载方式 2.属性列表 3.方法列表 本节课重点了解 EasyUI 中 DateTimeBox(日期时间输入框 ...

  5. 假设web应用的文档根目录为MyApp,那么可以从哪里找到database.jar文件。

    假设web应用的文档根目录为MyApp,那么可以从哪里找到database.jar文件. A. MyApp目录下 B. MyApp\images目录下 C. MyApp\WEB-INF目录下 D. M ...

  6. 快速开发微信小程序

    image.png 最近婷主在做微信小程序.自己的微信公众号也需要添加点料,乘着这次放假,把微信小程序研究了下.虽然没有做什么很强大的功能,不过好歹自己的公众号也有了微信小程序.够用即可. 1.需要先 ...

  7. 将BT转为磁力链接

    实战代码 安装完成后,我们来看下代码: 系统环境:Linux Python环境:Python2.7 请注意python版本 bt2url.py 1 2 3 4 5 6 7 8 9 10 11 12 1 ...

  8. 【BZOJ4723】[POI2017]Flappy Bird DP

    [BZOJ4723][POI2017]Flappy Bird Description <飞扬的小鸟>是一款风靡的小游戏.在游戏中,小鸟一开始位于(0,0)处,它的目标是飞到横坐标为X的某个 ...

  9. 170213、亿级Web系统搭建——单机到分布式集群

    [导读]徐汉彬曾在阿里巴巴和腾讯从事4年多的技术研发工作,负责过日请求量过亿的Web系统升级与重构,目前在小满科技创业,从事SaaS服务技术建设. 大规模流量的网站架构,从来都是慢慢“成长”而来.而这 ...

  10. 云计算之路:2009年Xen一个补丁背后那不为人知的故事

    仔细阅读了http://www.cnblogs.com/cmt/p/3729386.html这篇关于xen的博文,这篇博文写的挺赞的,分析的也很细致,涉及到4年前的一个patch的故事.在讲这个故事之 ...