HDU4009:Transfer water(有向图的最小生成树)
Transfer water
Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 6126 Accepted Submission(s): 2181
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4009
Description:
XiaoA lives in a village. Last year flood rained the village. So they decide to move the whole village to the mountain nearby this year. There is no spring in the mountain, so each household could only dig a well or build a water line from other household. If the household decide to dig a well, the money for the well is the height of their house multiplies X dollar per meter. If the household decide to build a water line from other household, and if the height of which supply water is not lower than the one which get water, the money of one water line is the Manhattan distance of the two households multiplies Y dollar per meter. Or if the height of which supply water is lower than the one which get water, a water pump is needed except the water line. Z dollar should be paid for one water pump. In addition,therelation of the households must be considered. Some households may do not allow some other households build a water line from there house. Now given the 3‐dimensional position (a, b, c) of every household the c of which means height, can you calculate the minimal money the whole village need so that every household has water, or tell the leader if it can’t be done.
Input:
Multiple cases.
First line of each case contains 4 integers n (1<=n<=1000), the number of the households, X (1<=X<=1000), Y (1<=Y<=1000), Z (1<=Z<=1000).
Each of the next n lines contains 3 integers a, b, c means the position of the i‐th households, none of them will exceeded 1000.
Then next n lines describe the relation between the households. The n+i+1‐th line describes the relation of the i‐th household. The line will begin with an integer k, and the next k integers are the household numbers that can build a water line from the i‐th household.
If n=X=Y=Z=0, the input ends, and no output for that.
Output:
One integer in one line for each case, the minimal money the whole village need so that every household has water. If the plan does not exist, print “poor XiaoA” in one line.
Sample Input:
2 10 20 30
1 3 2
2 4 1
1 2
2 1 2
0 0 0 0
Sample Output:
30
题意:
现在给出n户人家,每户人家都有对应的海拔高度,现在每户人家需要水,获得水有两个来源:自己挖井,从其它人家修建水渠。
假设从u到v修建水渠,如果u的海拔较高,那么只需要支付水渠的费用;否则还要加上水泵的费用;如果自己挖井费用只和海拔有关。
问当所有人家都有水时,最小花费为多少。
题解:
这个题可以看成是有向图的最小生成树模型,毕竟是要用有向边把图连通嘛,这个题不存在不成功的情况(天灾人祸除外 = =)。
还是建立一个虚点,然后直接向每户人家连边,边权为打井的费用;之和再根据题目描述构造其它边。
最后从虚点出发跑朱刘算法就行了。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#include <cmath>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = ;
int n,x,y,z,tot;
struct Point{
int x,y,z;
}p[N];
int dis(int a,int b){
return abs(p[a].x-p[b].x)+abs(p[a].y-p[b].y)+abs(p[a].z-p[b].z);
}
struct Edge{
int u,v,w;
}e[N*N];
int pre[N]; //记录前驱.
int id[N],vis[N],in[N];
int dirMst(int root){
int ans=;
while(){
memset(in,INF,sizeof(in));
memset(id,-,sizeof(id));
memset(vis,-,sizeof(vis));
for(int i=;i<=tot;i++){
int u=e[i].u,v=e[i].v,w=e[i].w;
if(w<in[v] && v!=u){
pre[v]=u;
in[v]=w;
}
} //求最小入边集
in[root]=;
pre[root]=root;
for(int i=;i<n;i++){
if(in[i]==INF) return -;
ans+=in[i];
}
int idx = ; //新标号
for(int i=;i<n;i++){
if(vis[i] == - ){
int u = i;
while(vis[u] == -){
vis[u] = i;
u = pre[u];
}
if(vis[u]!=i || u==root) continue; //判断是否形成环
for(int v=pre[u];v!=u;v=pre[v] )
id[v]=idx;
id[u] = idx++;
}
}
if(idx==) break;
for(int i=;i<n;i++){
if(id[i]==-) id[i]=idx++;
}
for(int i=;i<=tot;i++){
e[i].w-=in[e[i].v];
e[i].u=id[e[i].u];
e[i].v=id[e[i].v];
}
n = idx;
root = id[root];//给根新的标号
}
return ans;
}
int main(){
while(scanf("%d%d%d%d",&n,&x,&y,&z)!=EOF){
if(n+x+y+z<=) break ;
tot=;
for(int i=;i<=n;i++) scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].z);
for(int i=;i<=n;i++){
int k;
scanf("%d",&k);
for(int j=;j<=k;j++){
int id;
scanf("%d",&id);
e[++tot].u=i;e[tot].v=id;
if(p[i].z>=p[id].z) e[tot].w=dis(i,id)*y;
else e[tot].w=dis(i,id)*y+z;
}
}
for(int i=;i<=n;i++){
e[++tot].u=;e[tot].v=i;e[tot].w=p[i].z*x;
}
n++;
int ans = dirMst();
cout<<ans<<endl;
}
return ;
}
HDU4009:Transfer water(有向图的最小生成树)的更多相关文章
- HDU4009 Transfer water —— 最小树形图 + 不定根 + 超级点
题目链接:https://vjudge.net/problem/HDU-4009 Transfer water Time Limit: 5000/3000 MS (Java/Others) Me ...
- HDU4009 Transfer water 【最小树形图】
Transfer water Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) T ...
- hdu4009 Transfer water 最小树形图
每一户人家水的来源有两种打井和从别家接水,每户人家都可能向外输送水. 打井和接水两种的付出代价都接边.设一个超级源点,每家每户打井的代价就是从该点(0)到该户人家(1~n)的边的权值.接水有两种可能, ...
- hdu 4009 Transfer water(最小型树图)
Transfer water Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)To ...
- UVA:11183:Teen Girl Squad (有向图的最小生成树)
Teen Girl Squad Description: You are part of a group of n teenage girls armed with cellphones. You h ...
- HDU 4009——Transfer water——————【最小树形图、不定根】
Transfer water Time Limit:3000MS Memory Limit:65768KB 64bit IO Format:%I64d & %I64u Subm ...
- HDOJ 4009 Transfer water 最小树形图
Transfer water Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) T ...
- POJ3164:Command Network(有向图的最小生成树)
Command Network Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 20766 Accepted: 5920 ...
- HDU - 4009 - Transfer water 朱刘算法 +建立虚拟节点
HDU - 4009:http://acm.hdu.edu.cn/showproblem.php?pid=4009 题意: 有n户人家住在山上,现在每户人家(x,y,z)都要解决供水的问题,他可以自己 ...
随机推荐
- [SHELL]shell中的数学运算
一,expr 太麻烦,看的脑壳疼 二,使用方括号 !!!! bash shell用这种方法只支持整数运算,z shell倒是支持浮点型运算 var_1= var_2= var_3= my_var_1 ...
- (原)HUD绘画贴图解析
@小道:临时存放 1\主过程 说明: a\调用DrawTextureSimple时,会将UTexure封装成CavarsItem, 若是正交投射函数执行双,最后CavarsItem.Dra ...
- OpenMPI源码剖析4:rte.h 头文件的说明信息
上一篇文章中说道,我们在 rte.h 中发现了有价值的说明: 我们一块一块来分析,首先看到第一块,关于 Process name Object: * (a) Process name objects ...
- 【MySQL解惑笔记】忘记MySQL数据库密码
破解MySQL密码 一.MySQL5.7.5之前 只要有系统root密码就可以破解: [root@host- ~]# vim /etc/my.cnf //在配置文件中加入如下内容 [mysqld] s ...
- Matlab 图象操作函数讲解
h = imrect;pos = getPosition(h); 这个函数用来获取图象上特定区域的坐标,其中pos的返回值中有四个参数[xmin,ymin,width,height],特定区域的左上角 ...
- day-16 CNN卷积神经网络算法之Max pooling池化操作学习
利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...
- Linux 150命令之 文件和目录操作命令 ls
文件和目录操作命令 ls 查看文件和目录查看显示详信息 ls 工具的参数 ls -l 查看文件详细信息 ls -h 查看文件的大小 ls -ld 只查看目录信息 ls –F 给不同文件加上不同标记 l ...
- 2.azkaban3.0安装
安装规划安装azkban1.安装配置数据库2.下载安装web server3.安装mulit executor4.安装azkaban插件AZKABAN参数安装出现的问题 安装规划 IP 角色 端口 1 ...
- Python高级编程-序列化
在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict: dict1 = {'name': 'Rob', 'age': 19, 'score': 90} 可以随时修改变量,比如把age改成 ...
- 一次大量TIME_WAIT和Recv-Q 堵塞问题排查思路
记录一下周末出现问题~ 仅自己摘记不做任何参考. 第一天故障: 现象: 公司销售群和售后群炸了,说老后台(1.0版本)崩溃了,因为还有部门的业务没来得及迁移到新后台,我当时正在打农药哈哈~ 后 ...