51nod 1172 Partial Sums V2 卡精度的任意模数FFT
卡精度的任意模数fft模板题……
这道题随便写个表就能看出规律来(或者说考虑一下实际意义),反正拿到这题之后,很快就会发现他是任意模数fft模板题.
然后我就去网上抄了一下板子……
我打的是最土的任意模数fft,就是fft7次的那种……(好像有很多方法的样子……)
这种任意模数fft方法见http://blog.csdn.net/l_0_forever_lf/article/details/52886397
这道题的具体做法见http://blog.csdn.net/qq_33229466/article/details/78837522
这种方法的思想就是:
I.既然出题人给出了任意模数的多项式乘法,那么常规ntt肯定是不行
II.既然他取模,那数会很大,会炸精,常规的fft也不行
III.既然直接乘会炸精,那我们就把数变小,多跑几次也没关系
(IV.感觉加了一维卷积,有种这种方法很妙,可以继续扩展的感觉,但是很模糊,也说不具体)
本着这种思路,我们逆变换的时候,不能在点值表达式直接操作,最后一遍回去,因为这样效果和没有在一开始把数缩小一样,会炸精.
最后说一下这道题的坑点:如果你不预处理复数,你会炸精.
好像有的人没有预处理,但是用了long double,就没有被卡……
似乎cmath库里有标准库也有类库,而且有的函数两者并不都具有,但是最坑爹的一点是对于sin,cos等函数,cmath标准库的精度大于cmath类库……(这只是我经过亲身试验做出的推测)
反正预处理就没有这些破事……
#include <cmath>
#include <cstdio>
#include <cstring>
#include <complex>
#include <algorithm>
typedef long long LL;
typedef double db;
typedef std::complex<db> cd;
const int N=;
const db Pai=acos((db)-);
const int P=;
cd a1[N],b1[N],a2[N],b2[N],c1[N],c2[N],c3[N],w1[N],w2[N];
int rev[N],len;
int ai[N],bi[N],ans[N],ni[N];
inline void fft(cd *C,int opt,cd *wn){
register int i,j,k;cd temp;
for(i=;i<len;++i)if(rev[i]>i)std::swap(C[i],C[rev[i]]);
for(k=;k<=len;k<<=){
for(i=;i<len;i+=k){
for(j=;j<(k>>);++j){
temp=C[i+j+(k>>)]*wn[len/k*j];
C[i+j+(k>>)]=C[i+j]-temp;
C[i+j]+=temp;
}
}
}
if(opt==-){
db inv=./len;
for(i=;i<len;++i)C[i]*=inv;
}
}
inline void Mul(int *a,int *b,int *c,int n){
len=;
while(len<n)len<<=;
int i,sqr=sqrt(P);
cd temp;
for(i=;i<len;++i)rev[i]=(rev[i>>]>>)|((i&)?(len>>):);
for(i=;i<len;++i){
w1[i]=cd(std::cos(.*Pai/len*i),std::sin(.*Pai/len*i));
w2[i]=cd(std::cos(-.*Pai/len*i),std::sin(-.*Pai/len*i));
}
for(i=;i<len;++i){
a1[i]=ai[i]/sqr,b1[i]=ai[i]%sqr;
a2[i]=bi[i]/sqr,b2[i]=bi[i]%sqr;
}
fft(a1,,w1),fft(b1,,w1),fft(a2,,w1),fft(b2,,w1);
for(i=;i<len;++i){
c1[i]=a1[i]*a2[i];
c2[i]=a1[i]*b2[i]+a2[i]*b1[i];
c3[i]=b1[i]*b2[i];
}
fft(c1,-,w2),fft(c2,-,w2),fft(c3,-,w2);
for(i=;i<len;++i)
c[i]=((LL)(round(c1[i].real()))%P*sqr%P*sqr%P+(LL)(round(c2[i].real()))%P*sqr%P+(LL)(round(c3[i].real()))%P)%P;
}
int main(){
int n,k,i;
scanf("%d%d",&n,&k);
for(i=;i<n;++i)scanf("%d",&ai[i]);
bi[]=;
for(i=;i<n;++i)
bi[i]=(LL)bi[i-]*(k+i-)%P*(i==?ni[i]=:ni[i]=(-(LL)(P/i)*ni[P%i]%P+P)%P)%P;
Mul(ai,bi,ans,n<<);
for(i=;i<n;++i)printf("%d\n",ans[i]);
return ;
}
51nod 1172 Partial Sums V2 卡精度的任意模数FFT的更多相关文章
- 51nod 1172 Partial Sums V2
题目 给出一个数组A,经过一次处理,生成一个数组S,数组S中的每个值相当于数组A的累加,比如:A = {1 3 5 6} => S = {1 4 9 15}.如果对生成的数组S再进行一次累加操作 ...
- 【51nod】1123 X^A Mod B (任意模数的K次剩余)
题解 K次剩余终极版!orz 写一下,WA一年,bug不花一分钱 在很久以前,我还认为,数论是一个重在思维,代码很短的东西 后来...我学了BSGS,学了EXBSGS,学了模质数的K次剩余--代码一个 ...
- 51nod1172 Partial Sums V2
推一下式子发现是裸的FFT,$ans[k]=\sum_{i}\sum_{j}[i+j=k]a[i]*C_{m-1+j}^{j}$ 比较坑爹的就是这个模数,于是我们上任意模数的FFT 任意模数的FFT目 ...
- 51nod 1161 Partial Sums
给出一个数组A,经过一次处理,生成一个数组S,数组S中的每个值相当于数组A的累加,比如:A = {1 3 5 6} => S = {1 4 9 15}.如果对生成的数组S再进行一次累加操作,{1 ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- CF思维联系–CodeForces - 223 C Partial Sums(组合数学的先线性递推)
ACM思维题训练集合 You've got an array a, consisting of n integers. The array elements are indexed from 1 to ...
- 51nod1161 Partial Sums
开始想的是O(n2logk)的算法但是显然会tle.看了解题报告然后就打表找起规律来.嘛是组合数嘛.时间复杂度是O(nlogn+n2)的 #include<cstdio> #include ...
- Non-negative Partial Sums(单调队列)
Non-negative Partial Sums Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
- hdu 4193 Non-negative Partial Sums 单调队列。
Non-negative Partial Sums Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
随机推荐
- Codeforces Round #495 (Div. 2) Sonya and Matrix
正常没有正方形的限制下,值为i的点个数4i 那么从0开始遍历,第一个不为4i的值就是min(x, y) 由于对称性我们姑且令x为这个值 我们先列举n*m=t的各种情况 对于一对n, m.我们已经知道n ...
- Django常用命令总结
安装Django: pip install django 指定版本 pip3 install django==2.0 新建项目: django-admin.py startprject mysite ...
- 376. Binary Tree Path Sum【LintCode java】
Description Given a binary tree, find all paths that sum of the nodes in the path equals to a given ...
- Window下部署MySql数据库
官网下载地址:https://dev.mysql.com/downloads/mysql/,MySQL Community(社区版) Server 5.7.21,下载完毕后,解压文件. (1)在mys ...
- [CH0304]IncDec Sequence
和NOIP2018DAY1T1类似的题目,但思维难度高多了. 这题既可以抬高路面,也可以降低路面,而且目标平面不确定,就难起来了. 但是两道题的基本思路几乎一样,同样我们将 2~n 的高度差分,1之所 ...
- SpringCloud IDEA 教学 番外篇 后台运行Eureka服务注册中心
写在开头 研发过程中经常要做的事就是启动Eureka服务注册中心,每每都要启动一个IDEA,很是困扰.现在分享一个后台启动服务注册中心的方法. 准备工作 1打包一个eureka服务注册中心jar包(注 ...
- Codeforces 96D Volleyball(最短路径)
Petya loves volleyball very much. One day he was running late for a volleyball match. Petya hasn't b ...
- Thunder团队第五周 - Scrum会议6
Scrum会议6 小组名称:Thunder 项目名称:i阅app Scrum Master:邹双黛 工作照片: 宋雨同学在拍照,所以不在照片内. 参会成员: 王航:http://www.cnblogs ...
- 20145214实验三 敏捷开发与XP实践
20145214实验三 敏捷开发与XP实践 XP准则 沟通 :XP认为项目成员之间的沟通是项目成功的关键,并把沟通看作项目中间协调与合作的主要推动因素. 简单 :XP假定未来不能可靠地预测,在现在考虑 ...
- 再学习Webform页面生命周期
参考文章: 在vs2010,新建一个aspx页面,页面头部有一行代码: <%@ Page Language="C#" AutoEventWireup="true&q ...