[CQOI2011]放棋子
想到了50%吧算是。
f[i][j][k]表示,前i种,占了j行k列。方案数。
发现,转移要处理:“用c个棋子,占据n行m列”的方案数。
设g[i][j][k]表示,i行j列用k个棋子占的方案数。直接处理复杂度爆炸。
然后我就mengbier了。
考虑大力容斥:
也即,总方案数-不合法方案数(不能覆盖完全)
g[i][j][k]=C(i*j,k)-∑l∑r:g[l][r][k]*C(i,l)*C(j,r) (i*j>=k&&l<=i&&j<=r)
显然由于l,r不同,不会减多。
发现不用统计所有的 k,只用统计那c个即可。
然后f[i][j][k]的转移就顺理成章了。
复杂度:O(n^2m^2c)
总结:
没有想到容斥那一步。。。
正难则反。
最关键的是,不用k之间的递推,所以,第三维看似是k,其实是c(10而已)
[CQOI2011]放棋子的更多相关文章
- BZOJ 3294: [Cqoi2011]放棋子
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 628 Solved: 238[Submit][Status] ...
- bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 294[Submit][Status] ...
- [CQOI2011]放棋子 (DP,数论)
[CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...
- bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子
http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
- 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)
3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...
- P3158 [CQOI2011]放棋子(dp+组合数)
P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...
- BZOJ3294: [Cqoi2011]放棋子
Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...
- [CQOI2011]放棋子--DP
题目描述: 输入格式 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm.N,M<=30 C<=10 ...
- BZOJ3294: [Cqoi2011]放棋子(计数Dp,组合数学)
题目链接 解题思路: 发现一个性质,如果考虑一个合法的方案可以将行和列都压到一起,也就是说,在占用行数和列数一定的情况下,行列互换是不会影响答案的,那么考虑使用如下方程: $f[i][j][k]$为占 ...
随机推荐
- Vs2015 遇到 CL:fatal error c1510 cannot load language clui.dll
网上说什么点击修复VS,修改VS的,经验证都不好使,直接下载这个库,放在system32/64下面皆可以了
- Python爬虫使用浏览器的cookies:browsercookie
很多用Python的人可能都写过网络爬虫,自动化获取网络数据确实是一件令人愉悦的事情,而Python很好的帮助我们达到这种愉悦.然而,爬虫经常要碰到各种登录.验证的阻挠,让人灰心丧气(网站:天天碰到各 ...
- C#使用EF连接PGSql数据库
前言 由于项目需要,使用到了PGSql数据库,说实话这是第一次接触并且听说PGSql(PostgreSQL)关系型数据库,之前一直使用的都是SqlServer,一头雾水的各种找资源,终于将PGSql与 ...
- lintcode172 删除元素
删除元素 给定一个数组和一个值,在原地删除与值相同的数字,返回新数组的长度. 元素的顺序可以改变,并且对新的数组不会有影响. 您在真实的面试中是否遇到过这个题? Yes 样例 给出一个数组 [0, ...
- 深度学习笔记 (一) 卷积神经网络基础 (Foundation of Convolutional Neural Networks)
一.卷积 卷积神经网络(Convolutional Neural Networks)是一种在空间上共享参数的神经网络.使用数层卷积,而不是数层的矩阵相乘.在图像的处理过程中,每一张图片都可以看成一张“ ...
- SOA是什么为什么要面向服务编程
SOA(面向服务的架构),Service-Oriented Architecture,面向服务的体系结构. 也就是以服务为核心的架构.这里需要理解什么是服务. 比如你有一个读取通知的方法: publi ...
- lintcode-14-二分查找
二分查找 给定一个排序的整数数组(升序)和一个要查找的整数target,用O(logn)的时间查找到target第一次出现的下标(从0开始),如果target不存在于数组中,返回-1. 样例 在数组 ...
- TCP系列28—窗口管理&流控—2、延迟ACK(Delayed Acknowledgments)
一.简介 之前的内容中我们多次提到延迟ACK(Delayed Ack),延迟ACK是在RFC1122协议中定义的,协议指出,一个TCP实现应该实现延迟ACK,但是ACK不能被过度延迟,协议给出延迟AC ...
- oracle 删除数据恢复
select * from taxi_comp_worksheet_ext as of timestamp to_timestamp('2014-09-22 13:00:00', 'yyyy-m ...
- JSTL标签之核心标签
JSTL(JSP Standard Tag Library ,JSP标准标签库)是一个实现 Web应用程序中常见的通用功能的定制标记库集,这些功能包括迭代和条件判断.数据管理格式化.XML 操作以及数 ...