HDU 5572--An Easy Physics Problem(射线和圆的交点)
An Easy Physics Problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3845 Accepted Submission(s): 768
Currently the ball stands still at point A, then we'll give it an initial speed and a direction. If the ball hits the cylinder, it will bounce back with no energy losses.
We're just curious about whether the ball will pass point B after some time.
Every test case contains three lines.
The first line contains three integers Ox, Oy and r, indicating the center of cylinder is (Ox,Oy) and its radius is r.
The second line contains four integers Ax, Ay, Vx and Vy, indicating the coordinate of A is (Ax,Ay) and the initial direction vector is (Vx,Vy).
The last line contains two integers Bx and By, indicating the coordinate of point B is (Bx,By).
⋅ |Ox|,|Oy|≤ 1000.
⋅ 1 ≤ r ≤ 100.
⋅ |Ax|,|Ay|,|Bx|,|By|≤ 1000.
⋅ |Vx|,|Vy|≤ 1000.
⋅ Vx≠0 or Vy≠0.
⋅ both A and B are outside of the cylinder and they are not at same position.
这里有一个小问题,如果反过来求B关于此直线的对称点在圆心->A路径上,是会WA的.
#include <iostream>
#include <cstdio>
#include <cstring>
#include<algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
const double eps = 1e-;
int sgn(double x) {
if (fabs(x) < eps)return ;
if (x < )return -;
else return ;
}
struct point {
double x, y;
point() {}
point(double x, double y) : x(x), y(y) {}
void input() {
scanf("%lf%lf", &x, &y);
}
bool operator ==(point b)const {
return sgn(x - b.x) == && sgn(y - b.y) == ;
}
bool operator <(point b)const {
return sgn(x - b.x) == ? sgn(y - b.y)< : x<b.x;
}
point operator -(const point &b)const { //返回减去后的新点
return point(x - b.x, y - b.y);
}
point operator +(const point &b)const { //返回加上后的新点
return point(x + b.x, y + b.y);
}
point operator *(const double &k)const { //返回相乘后的新点
return point(x * k, y * k);
}
point operator /(const double &k)const { //返回相除后的新点
return point(x / k, y / k);
}
double operator ^(const point &b)const { //叉乘
return x*b.y - y*b.x;
}
double operator *(const point &b)const { //点乘
return x*b.x + y*b.y;
}
double len() { //返回长度
return hypot(x, y);
}
double len2() { //返回长度的平方
return x*x + y*y;
}
point trunc(double r) {
double l = len();
if (!sgn(l))return *this;
r /= l;
return point(x*r, y*r);
}
};
struct line {
point s;
point e;
line() { }
line(point _s, point _e) {
s = _s;
e = _e;
}
bool operator ==(line v) {
return (s == v.s) && (e == v.e);
}
//返回点p在直线上的投影
point lineprog(point p) {
return s + (((e - s)*((e - s)*(p - s))) / ((e - s).len2()));
}
//返回点p关于直线的对称点
point symmetrypoint(point p) {
point q = lineprog(p);
return point( * q.x - p.x, * q.y - p.y);
}
//点是否在线段上
bool pointonseg(point p) {
return sgn((p - s) ^ (e - s)) == && sgn((p - s)*(p - e)) <= ;
}
};
struct circle {//圆
double r; //半径
point p; //圆心
void input() {
p.input();
scanf("%lf", &r);
}
circle() { }
circle(point _p, double _r) {
p = _p;
r = _r;
}
circle(double x, double y, double _r) {
p = point(x, y);
r = _r;
}
//求直线和圆的交点,返回交点个数
int pointcrossline(line l, point &r1, point &r2) {
double dx = l.e.x - l.s.x, dy = l.e.y - l.s.y;
double A = dx*dx + dy*dy;
double B = * dx * (l.s.x - p.x) + * dy * (l.s.y - p.y);
double C = (l.s.x - p.x)*(l.s.x - p.x) + (l.s.y - p.y)*(l.s.y - p.y) - r*r;
double del = B*B - * A * C;
if (sgn(del) < ) return ;
int cnt = ;
double t1 = (-B - sqrt(del)) / ( * A);
double t2 = (-B + sqrt(del)) / ( * A);
if (sgn(t1) >= ) {
r1 = point(l.s.x + t1 * dx, l.s.y + t1 * dy);
cnt++;
}
if (sgn(t2) >= ) {
r2 = point(l.s.x + t2 * dx, l.s.y + t2 * dy);
cnt++;
}
return cnt;
}
};
point A, V, B;
circle tc;
point r1, r2;
int main() {
int t, d = ;
scanf("%d", &t);
while (t--) {
tc.input();
A.input();
V.input();
B.input();
int f = ;
int num = tc.pointcrossline(line(A, A + V), r1, r2);
if (num < ) {
point t = B - A;
if (t.trunc() == V.trunc()) f = ;
else f = ;
}
else {
line l = line(tc.p, r1);
line l1 = line(A, r1);
line l2 = line(r1, B);
point t = l.symmetrypoint(A);
if (l1.pointonseg(B))f = ;
else if (l2.pointonseg(t))f = ; //求B的对称点会WA
else f = ;
}
if (f == )
printf("Case #%d: Yes\n", d++);
else
printf("Case #%d: No\n", d++);
}
return ;
}
HDU 5572--An Easy Physics Problem(射线和圆的交点)的更多相关文章
- HDU 5572 An Easy Physics Problem (计算几何+对称点模板)
HDU 5572 An Easy Physics Problem (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572 Descripti ...
- hdu 5572 An Easy Physics Problem 圆+直线
An Easy Physics Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- HDU - 5572 An Easy Physics Problem (计算几何模板)
[题目概述] On an infinite smooth table, there's a big round fixed cylinder and a little ball whose volum ...
- 【HDU 5572 An Easy Physics Problem】计算几何基础
2015上海区域赛现场赛第5题. 题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意:在平面上,已知圆(O, R),点B.A(均在圆外),向量 ...
- HDU 5572 An Easy Physics Problem【计算几何】
计算几何的题做的真是少之又少. 之前wa以为是精度问题,后来发现是情况没有考虑全... 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5572 题意: ...
- 2015 ACM-ICPC 亚洲区上海站 A - An Easy Physics Problem (计算几何)
题目链接:HDU 5572 Problem Description On an infinite smooth table, there's a big round fixed cylinder an ...
- ACM 2015年上海区域赛A题 HDU 5572An Easy Physics Problem
题意: 光滑平面,一个刚性小球,一个固定的刚性圆柱体 ,给定圆柱体圆心坐标,半径 ,小球起点坐标,起始运动方向(向量) ,终点坐标 ,问能否到达终点,小球运动中如果碰到圆柱体会反射. 学到了向量模板, ...
- HDU 4974 A simple water problem(贪心)
HDU 4974 A simple water problem pid=4974" target="_blank" style="">题目链接 ...
- hdu 1040 As Easy As A+B
As Easy As A+B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
随机推荐
- js原生获取css属性
原文参考http://blog.csdn.net/lzding/article/details/46317777 1.写在dom上的属性,内联样式 <div id="box" ...
- .Net Core 初体验及总结(内含命令大全)
dotnet 命令目录: dotnet new -创建 dotnet restore -还原 dotnet build -编译 dotnet run -运行 dotnet test -测试 dot ...
- 一、docker学习笔记——安装docker
系统win10 企业版 1.下载docker CE 2.安装.注意,由于docker 与Oracle VM VirtualBox 冲突,在windows平台上二者不可共存.你只能2选1!! 3.如果d ...
- 【Leetcode】【Medium】Two Sum
Given an array of integers, find two numbers such that they add up to a specific target number. The ...
- Mysql学习---全国省市区以及邮编数据库
更多下载
- Ubuntu中的两种link的区别
Ubuntu中有两种link(windows世界中文件的“快捷方式”),一个是hard link(硬链接),另一个是symbolic link(软链接). 那么,什么是硬链接,什么又是软链接呢? 硬链 ...
- February 3 2017 Week 5 Friday
Laughter is an instant vacation. 笑一笑,身心轻松宛如度了个短假. Always present a smile on your face, even there's ...
- 【2D游戏引擎】WIP反思
WIP(Working In Progress)是我初学游戏引擎开发时候开发的一个2D游戏引擎,当时计划为它实现类似Unity一样的编辑器,具有和Unity相似的工作流,但是由于水平不够,走了很多弯路 ...
- nfs 笔记
问题:客户端在nfs文件目录下读写文件提示Permission denied: 解决方法: 修改/etc/exports 中 文件共享方式为 no_root_squash no_root_squash ...
- JAVA中日期 yyyy-MM-dd HH:mm:ss和yyyy-MM-dd hh:mm:ss的区别
JAVA中日期 yyyy-MM-dd HH:mm:ss和yyyy-MM-dd hh:mm:ss的区别 : HH:24小时制 hh:12小时制 package time; import java.tex ...