【题意】Universal Online Judge

【算法】状态压缩型DP

【题解】看数据范围大概能猜到是状压了。

根据三点确定一条抛物线,枚举两个点之间的抛物线,再枚举有多少点在抛物线上(压缩为状态c[]),这样预处理出至多n*n/2+n条抛物线。(注意加上只经过一点的抛物线)

然后f[i]表示猪的消灭状态为i的最小步数,转移方程:f[i&c[j]]=min(f[i&c[j]],f[i]+1)。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#include<cmath>
using namespace std;
int read(){
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
const int maxN=,maxn=;
const double eps=1e-;
int c[maxn],f[maxN],n,tot,qaq;
double x[],y[],a[maxn],b[maxn]; int main(){
int T=read();
while(T--){
n=read();qaq=read();tot=;
for(int i=;i<n;i++)scanf("%lf%lf",&x[i],&y[i]);
for(int i=;i<n;i++){
c[++tot]=<<i;
for(int j=i+;j<n;j++){
b[++tot]=(y[j]-y[i]*x[j]*x[j]/(x[i]*x[i]))/(x[j]-x[j]*x[j]/x[i]);
a[tot]=(y[i]-b[tot]*x[i])/(x[i]*x[i]);
if(a[tot]+eps>){tot--;continue;}
c[tot]=(<<i)|(<<j);
for(int k=j+;k<n;k++)if(fabs(a[tot]*x[k]*x[k]+b[tot]*x[k]-y[k])<eps){
c[tot]|=(<<k);
}
}
}
memset(f,0x3f,sizeof(f));
f[]=;
for(int i=;i<=tot;i++){
for(int j=;j<(<<n);j++){
f[j|c[i]]=min(f[j|c[i]],f[j]+);//wei yun suan
}
}
printf("%d\n",f[(<<n)-]);
}
return ;
}

【NOIP】提高组2016 愤怒的小鸟的更多相关文章

  1. NOIP提高组2016 D2T3 【愤怒的小鸟】

    貌似还没有写过状压DP的题目,嗯,刚好今天考了,就拿出来写一写吧. 题目大意: 额,比较懒,这次就不写了... 思路分析: 先教大家一种判断题目是不是状压DP的方法吧. 很简单,那就是--看数据范围! ...

  2. 题解——洛谷P2827 NOIP提高组 2016 蚯蚓

    队列模拟 详细题解待填坑 #include <cstdio> #include <algorithm> #include <queue> #include < ...

  3. NOIP提高组2016总结

    前言 大翻车! 300--: day1 8:30~9:00, 照常看题,思考. 9:00~9:15, 搞定第一题,很水. 9:15~9:45, 思考第二题,我考虑用分深度来处理,想出个个玄学暴力,但刚 ...

  4. NOIP提高组2016 D1T2 【天天爱跑步】

    码了一个下午加一个晚上吧...... 题目描述: 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成 ...

  5. NOIP提高组初赛难题总结

    NOIP提高组初赛难题总结 注:笔者开始写本文章时noip初赛新题型还未公布,故会含有一些比较老的内容,敬请谅解. 约定: 若无特殊说明,本文中未知数均为整数 [表达式] 表示:在表达式成立时它的值为 ...

  6. NOIP提高组2004 合并果子题解

    NOIP提高组2004 合并果子题解 描述:在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消 ...

  7. 计蒜客 NOIP 提高组模拟竞赛第一试 补记

    计蒜客 NOIP 提高组模拟竞赛第一试 补记 A. 广场车神 题目大意: 一个\(n\times m(n,m\le2000)\)的网格,初始时位于左下角的\((1,1)\)处,终点在右上角的\((n, ...

  8. 1043 方格取数 2000 noip 提高组

    1043 方格取数  2000 noip 提高组 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样 ...

  9. [NOIP提高组2018]货币系统

    [TOC] 题目名称:货币系统 来源:2018年NOIP提高组 链接 博客链接 CSDN 洛谷博客 洛谷题解 题目链接 LibreOJ(2951) 洛谷(P5020) 大视野在线评测(1425) 题目 ...

随机推荐

  1. A+B 输入输出练习I

    while True: try: s=raw_input() a,b=s.split(' ') a,b=int(a),int(b) print a+b except EOFError: break A ...

  2. SpringMVC的工作流程-005

    1.用户发送请求至前端控制器DispatcherServlet           2.DispatcherServlet收到请求调用HandlerMapping处理器映射器.          3. ...

  3. 第23天:js-数据类型转换

    一.padding1.内边距会影响盒子大小2.行内元素,尽量不用上下的padding和margin3.块元素嵌套块元素.子级会继承父级的宽度,高度由内容决定.如果给子级再设置padding,不会影响盒 ...

  4. BZOJ 1005 明明的烦恼(prufer序列+高精度)

    有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合 ...

  5. CF997B Roman Digits

    题意翻译 给你一棵树,每次挑选这棵树的两个叶子,加上他们之间的边数(距离),然后将其中一个点去掉,问你边数(距离)之和最大可以是多少. 题目描述 You are given an unweighted ...

  6. [NOIP2012 TG D2T1]同余方程

    题目大意:求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 题解:即求a在mod b意义下的逆元,这里用扩展欧几里得来解决 C++ Code: #include<cstdio ...

  7. BZOJ2434 [Noi2011]阿狸的打字机 【AC自动机 + fail树 + 树状数组】

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 3610  Solved: 1960 [Submit][S ...

  8. webpack开发模式和生产模式设置及不同环境脚本执行

    1. webpack设置开发模式和生产模式 (1). DefinePlugin插件设置 new webpack.DefinePlugin({ 'process.env': { NODE_ENV: '& ...

  9. Linux之初试驱动20160613

    这篇文章主要介绍一下Linux内核下的驱动结构与书写,以及介绍Linux下简单使用驱动的应用程序: 首先我们直接看使用驱动的简单应用程序: #include <sys/types.h> # ...

  10. 第六章 指针与const

    const一词在字面上来源于常量constant,const对象在C/C++中是有不同解析的,如第二章所述,在C中常量表达式必须是编译期,运行期的不是常量表达式,因此C中的const不是常量表达式:但 ...