Coax Transformers[转载]

Coax Transformers
How to determine the needed Z for a wanted Quarter Wave Lines tranformation ratio

Some applied examples
1. From 50 ohms feedline to 12.5 ohms Yagi with straight split DE?
Z = sqrt ( 50 ohms x 12.5 ohms) = 25 ohms
This we can produce by using two 50 ohms Quarter Wave Lines in parallel 2. From 50 ohms feedline to 28 ohms Yagi with straight split DE?
Z = sqrt ( 50 ohms x 28 ohms) = 37.4 ohms
This we nearly can produce by using two 75 ohms Quarter Wave Lines in parallel 3. And finally the trivial case:
From 50 ohms feedline to 50 ohms Yagi with straight split DE?
Z = sqrt ( 50 ohms x 50 ohms) = 50 ohms
How to transform from 50 ohms to 12.5 ohms using parallel Quarter Wave Lines

How to transform from 50 ohms to 28 ohms using parallel Quarter Wave Lines (aka DK7ZB - Match)

How to transform from 50 ohms to 200 ohms using parallel Quarter Wave Lines // corrected 2014-09-23, tnx DH1LM,
who showed me that the old sketch was wrong. Hopefully this one does ...

Using Quarter Wave Lines this way works as a series collection actually, Z is 100 ohms, Za = 50 ohms, Zb = 200 ohms
How to transform from 50 ohms to 75 ohms using parallel Twelfth Wave Lines

![]()
How produce Ferrite RF Transformers for various impedances transformation ratios
• Ferrite Transformer
Image shows a 1:1 transformer as blue and black wires windings
ratio is 1:1. This one is for Shortwave use. For VHF / UHF dimensions must be much smaller.

Windings N1/N2 ratio by square is transformation ratio for impedance:
Example: Za = 50 ohms, Zb = 200 ohms ...
Na = 6 wdg; Nb = 12 wdg => Na/Nb = 6/12 = 0.5
Transformation ratio = (Na/Nb)xy2 = 0.25 = 1/4 or 1:4
200 ohms x 0.25 = 50 ohms
• Balun Transformer

The Balun transformer is a two-in-one device:
The transformation ratio is same as described above, but now the 50 ohms side is unbalanced (coax feed)
while the 200 ohms side is balanced or symmetrical.
An often seeked for transformation ratio might be 50 to 75 ohms.
This could be acheived using 6 and 9 wdg. respectively 6 + 3 wdg on the Balun Transformer.
• What about the size of the ferrite then?
For any receiving purpose it may be very small. Same to the wire diameters. A tiny ferrite bead equipped with 0.12 mm or so enameled copper wire will do for most purposes. For handling transmitting power or limits issuing intermodulation there is one rule: The ferrite must not saturate. Big is beautiful and size does matter here. Unlike with applications for short wave where ferrite baluns in transmitting antennas are widely used we have only few data and less working ferrite materials when we talk VHF / UHF applications. A rule of thumbs is .. it must not heat up much, it shall not get hot of very warm during transmitting. Having large size ferrites and wires wrapped around is in contradiction to the need for shortest wires on VHF / UHF. That is why we find receiving purpose small ferrite bead based transformers often, but power handling transmitting transformer very seldom here.
Real dimensions: using very small double hole ferrites in a 144 MHz RX frontend

they do not need to be as tiny as that, but to give an impression ...

However here is a little table holding some suitable types, makes and sizes for VHF / UHF transmitting purpose ferrite transformers
Size Amidon T37 or T50, inner diam. = 5.21 / 7.70 mm fit RG58 and RG142 B/U Teflon coax.
Size Amidon T80, inner diam. = 12.60 mm fits RG213 coax, Aircell ...
Code T50-0 (color code: brown) covers 50-300 MHz
Material 43 is for blocking VHF/UHF frequencies
A good choice are the following cores:
FT 50 B-43 inner diam. 7.9 mm, outer diam 12.7 mm, length 12.7 mm (approx EUR 3 pp.)
FB-43-5621 inner diam. 6.4 mm, outer diam. 14.3 mm, length 28.6 mm
FB 43-1020 inner diam. 12.7 mm, outer diam. 25.4 mm, length 28.2 mm
![]()
A commerially made broad band Transformer to match 75 ohms feedline coax to a 300 ohms UHF TV antenna
PCB with inductances.
Designing something like this is rather complex and usually done using an 'EM' software like Sonnet EM, FEKO, ADS ... . So I just show an example. For those who want to dig themselfs into the topic: There are free, limited in size of analysed object versions like 'Sonnet EM Lite' available.

For an etched on PCB solution for 70 cm Amateur Radio Band that does 50 to 28 ohms see here ![]()
![]()
How to transform from 50 ohms to 200 ohms to feed a Folded Dipole as Driven Element

The transformation ratio of a Half Wave "Diversion" Line is 1:4.
What to avoid feeding a Folded DE

Do not attach the feeding coax in a way as shown above so that the coax loop forms anything close to Quarter Wave Line in series to the Balun. Being close to Quarter Lambda it might interfere seriously with the Balun and you end up with bad VSWR on a nice antenna probably. Most attention must be paid if the Balun side of the FD is free floating i.e. not connected to gnd respectively boom.
Tape it to the boom right from the connector or box on, or leave it hanging for much longer than λ/4 x v-factor.
![]()
Note: Any odd multiple of λ/4 such as 5/4 λ or 7/4 λ will transform exactly as the sole λ/4 line. Why so?
Because a half wave line does not change anything, apart from losses. Any odd number of λ/4 can be seen as a number of half wave lines plus a single λ/4 wave line.

Practical hint: I used a quality coaxial 432 MHz 4 x power splitter for joining four 1296 MHz Yagis on serveral contest occasions with good success.
Same would apply to 144 MHz splitters to use on 432 Mhz and so forth. Any tripple frequency ... just mind connecting bushings pins inductances or coax pigtails that have more impact on that tripple frequency.
Feeding stacked Antennas with Coax
How to feed two 25 ohm Antennas from 50 ohm coax

How to feed two 50 ohm Antennas from 50 ohm coax

How to feed four 50 ohm Antennas from 50 ohm coax

A conventient way to feed a 4 Yagi stack. 4 x 50 ohms any length means any length but all four of same length.
How to feed four 50 ohm Antennas in typical H-configuration from 50 ohm coax in style

A classical 4 Yagi stack may be fed and phased using 50 ohms coax efficiently when using odd multiples of λ/4 like 5/4 λ for making the horizontal phasing lines. An example: At a given stacking distance of 3.0 m the 5/4 λ equals 5 x 0.34 m = 1.7 m roughly on 144 MHz whe taking the v-factor for PE coax into account. That makes it 1.7 m to the left plus 1.7 m to the right. Enough to bridge over the two H-frame tubes.
![]()
How to get four Folded Dipoles fed in phase

It is understood that all feeding coaxes must be of similar length and impedances must be transformed as shown above or using a Power Splitter ![]()
• All shields are to be connected on same side
• All Folded Dipoles are facing upwards
... which in typical H-frame 4 bay configuration involves turning the struts of the lower pair upside down while elements and Dipole stay as on the upper pair. Or simply put: all dipole boxes or Matches face down.
![]()
How to get four Straight Split Dipoles fed in phase

It is understood that all feeding coaxes must be of similar length and impedances must be transformed as shown above or using a Power Splitter ![]()
• All shields are to be connected on same side
![]()
How to get a vertical 4 Yagi stack fed in phase

In General:
It is understood that all feeding coaxes (1,2,3,4) must be of similar length and impedances must be transformed as shown above or using a Power Splitter ![]()
Specificly:
Using similar lengths for all four feeding coaxes needs somehow winding up # 2 and 3. We find a remedy here using a length of minus full 360 degr. for the inner coaxes # 2, 3. As 360 degr. or even multiples of that do not change anything according feeding phase. With a lag of n x 360 degr. we are just at the same point on the sinus we find on the outer Yagis. Which in practise means we are feeding all dipoles in phase.
An example: 360 degr. is just 1.0 wavelength, multiplied with real velocity factor of coax to be used at designated frequency. Likewise v = 0.82 of some foam insulated coax on 144.1 MHz (2.080 m) makes 360 degr. of runtime on coax be equivalent to a length of 1.706 m Simply put: coaxes # 2, 3 can be 1.706 m shorter than the coaxes # 1, 4 feeding the outer dipoles.
• All shields are to be connected on same side
Coax Transformers[转载]的更多相关文章
- maven package 知识(转载)
“打包“这个词听起来比较土,比较正式的说法应该是”构建项目软件包“,具体说就是将项目中的各种文件,比如源代码.编译生成的字节码.配置文件.文档,按照规范的格式生成归档,最常见的当然就是JAR包和WAR ...
- Hibernate使用原生SQL(转载)
本文转载,出处如下:http://bhdweb.iteye.com/blog/801084 HQL尽管容易使用,但是在一些复杂的数据操作上功能有限.特别是在实现复杂的报表统计与计算,以及多表连接查询上 ...
- [转载] Kafka+Storm+HDFS整合实践
转载自http://www.tuicool.com/articles/NzyqAn 在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统 ...
- [转载] 基于Dubbo框架构建分布式服务
转载自http://shiyanjun.cn/archives/1075.html Dubbo是Alibaba开源的分布式服务框架,我们可以非常容易地通过Dubbo来构建分布式服务,并根据自己实际业务 ...
- 转载maven安装,配置,入门
转载:http://www.cnblogs.com/dcba1112/archive/2011/05/01/2033805.html 本书代码下载 大家可以从我的网站下载本书的代码:http://ww ...
- Crystal Clear Applied: The Seven Properties of Running an Agile Project (转载)
作者Alistair Cockburn, Crystal Clear的7个成功要素,写得挺好. 敏捷方法的关注点,大家可以参考,太激动所以转载了. 原文:http://www.informit.com ...
- RTP与RTCP协议介绍(转载)
RTSP发起/终结流媒体.RTP传输流媒体数据 .RTCP对RTP进行控制,同步.RTP中没有连接的概念,本身并不能为按序传输数据包提供可靠的保证,也不提供流量控制和拥塞控制,这些都由RTCP来负责完 ...
- 《Walking the callstack(转载)》
本文转载自:https://www.codeproject.com/articles/11132/walking-the-callstack Download demo project with so ...
- [转载]MVVM模式原理分析及实践
没有找到很好的MVVM模式介绍文章,简单找了一篇,分享一下.MVVM实现了UI\UE设计师(Expression Blend 4设计界面)和软件工程师的合理分工,在SilverLight.WPF.Wi ...
随机推荐
- 与众不同 windows phone (36) - 8.0 新的瓷贴: FlipTile, CycleTile, IconicTile
[源码下载] 与众不同 windows phone (36) - 8.0 新的瓷贴: FlipTile, CycleTile, IconicTile 作者:webabcd 介绍与众不同 windows ...
- 与众不同 windows phone (47) - 8.0 其它: 锁屏信息和锁屏背景, 电池状态, 多分辨率, 商店, 内置协议, 快速恢复
[源码下载] 与众不同 windows phone (47) - 8.0 其它: 锁屏信息和锁屏背景, 电池状态, 多分辨率, 商店, 内置协议, 快速恢复 作者:webabcd 介绍与众不同 win ...
- LeetCode2:Median of Two Sorted Arrays
题目: There are two sorted arrays A and B of size m and n respectively. Find the median of the two sor ...
- mysql学习笔记 第八天
where,group by,having重新详解 where的用法: where与in的配合使用,in(值1,值2,...)表示结果在值1,值2,...其中任何一个. 聚合函数和group by的用 ...
- Sigleton 单例模式 的简单应用
需求:一个简单的后台java程序,收集信息,并将信息发送到远端服务器. 实现:实现一个后台线程,实时处理发送过来的信息,并将信息发送到服务器. 技术要点: 1.单例模式 2.队列 并没有实现全部代码, ...
- SAP中关于用户IP信息的获取(转载)
SAP中如何获取登录用户的IP? 或如何查看哪些IP登录到SAP中: 在Table: USR41中查看,具体字段的说明如下: MANDT --- ClientBNAME --- 登录的 ...
- cl_gui_cfw=>flush
用法一: REFRESH_TABLE_DISPLAY虽然刷新的界面,但是SAP GUI并不是实时更新,而是将更新的结果放在缓存中,手动调用CL_GUI_CFW=>FLUSH才能触 ...
- C#中的Mutex对象认识
我们知道,有些应用程序可以重复打开,有些只能打开一个,我以前写的程序为了防止用户打开多个程序,都是去遍历Process 查找进程的方式,现在看起来真是不专业,今天看大神的破解分析文章时,认识了mute ...
- .NET破解之PDFdo转换器
无意中看到一个PDF转换器,叫PDFdo,看起了功能挺多的,于是想把它破了. 下载 官网:http://www.pdfdo.com/ 安装 安装后,只有一个exe应用程序,如果是.NET 程序应该有很 ...
- Installing FIM 2010 R2 SP1 Portal on SharePoint Foundation 2013
http://www.fimspecialist.com/fim-portal/installing-fim-2010-r2-sp1-portal-on-sharepoint-foundation-2 ...