问题说明:

除了自身之外,无法被其它整数整除的数称之为质数,要求质数很简单,但如何快速的求出质数则一直是程式设计人员与数学家努力的课题, 在这边介绍一个着名的 Eratosthenes求质数方法。

解法:

首先知道这个问题可以使用回圈来求解,将一个指定的数除以所有小于它的数,若可以
整除就不是质数,然而如何减少回圈的检查次数?如何求出小于N的所有质数?

我们先来看一个丧心病狂的低效率的解决方式:

//检验质数
bool checkZS(int a)
{
for (int i = ;i < a;i++)
{
if ( == a%i)
{
return false;
}
}
return true;
}

首先我们写一个检验质数的函数,下面我们在主函数调用:

int n = ;
clock_t start,end;//用于计时
start = clock() ;
for(int i = ;i <= n;i++)
{
if (checkZS(i))
{
cout<<i<<" ";
}
}
end = clock();
cout<<"\n总共花费了"<<(long double)(end - start)/CLK_TCK<<"秒"<<endl;

好了,让我们看下在99999以内的质数算出来的运行结果:

时间花费了17秒,太慢了;下面我们想想怎样来改进算法!

首先知道这个问题可以使用回圈来求解,将一个指定的数除以所有小于它的数,若可以整除就不是质数,然而如何减少回圈的检查次数?如何求出小于N的所有质数?
首先假设要检查的数是N好了,则事实上只要检查至N的开根号就可以了,道理很简单,假设A*B = N,如果A大于N的开根号,则事实上在小于A之前的检查就可以先检查到这个数可以整除N。 不过在程式中使用开根号会精确度的问题, 所以可以使用 i*i <= N进行检查, 且执行更快 。
再来假设有一个筛子存放1~N,例如:
2 3 4 5 6 7 8 9 10  11  12 ........N
先将2的倍数筛去:
2 3 5 7 9 11 13........N
再将3的倍数筛去:
2 3 5 7 11 13 17 19........N
再来将5的倍数筛去,再来将7的质数筛去,再来将11的倍数筛去........,如此进行到最后留下的数就都是质数,这就是Eratosthenes筛选方法(Eratosthenes Sieve Method)

检查的次数还可以再减少,事实上,只要检查6n+1与6n+5就可以了,也就是直接跳过2与3的倍
数,使得程式中的if的检查动作可以减少。

下面我们上代码:

/*
问题:
除了自身之外,无法被其它整数整除的数称之为质数,要求质数很简单,但如何快速的
求出质数则一直是程式设计人员与数学家努力的课题, 在这边介绍一个着名的 Eratosthenes求质
数方法。
2013/7/18
张威
*/
#include <iostream>
#include <time.h>
using namespace std; #define n 99999 int main()
{
int a[n+];//建立一个数组,使a[i] == i,这样通过筛选,将非质数所在位置置0
for (int i = ;i <= n;i++)
{
a[i] = i;
}
clock_t start,end;//用于计时
start = clock() ; //每次进行筛选的数,进行优化,实际上只要筛选到 N开放就行
for (int i = ;i*i <= n;)
{
//从i处开始筛选(比i小的肯定不能被i整除)
for (int j = i;j <= n;j++)
{
//通过while循环.跳过中间置0区域
while( == a[j] && j <= n)
{
j++;
}
//假如a[j]能被i整除而且不相等(也就是说不是本身),就把这个位置数值置为0
if ( == a[j]%i && i != a[j])
{
a[j] = ;
}
}
//i的步进值优化,即跳过2或3的倍数,每次递增数加大
if((i-)% == )
i += ;
else if((i-)% == )
{
i += ;
}
else
{
i++;
}
}
end = clock();
for(int i = ;i <= n;i++)
{
if (a[i] != )
{
cout<<a[i]<<" ";
}
}
cout<<"\n总共花费了"<<(long double)(end - start)/CLK_TCK<<"秒"<<endl;
return ;
}

Eratostheness

上面标出了在减少算法中循环次数的优化方面所进行的修改,下面是运行结果:

两者之间的差距的话.......不说了,自己写的东西和这些算法相比就是渣渣!

下面上示例上面的代码:

#include <stdio.h>
#include <stdlib.h>
#define N 1000
int main(void) {
int i, j;
int prime[N+];
for(i = ; i <= N;i++)
prime[i] = ;
for(i = ; i*i <= N;i++) { // 这边可以改进
if(prime[i] == ) {
for(j = *i; j <= N;j++) {
if(j % i == )
prime[j] = ;
}
}
}
for(i = ; i < N;i++) {
if(prime[i] == ) {
printf("%4d ", i);
if(i % == )
printf("\n");
}
}
printf("\n");
return ;
}

示例代码

可以看到其实还是上面自己写的在示例的基础上还是做了些改善的!

Eratosthenes筛选法求解质数的更多相关文章

  1. Eratosthenes筛选法计算质数

    <C和指针>第6章第4道编程题: 质数就是只能被1和本身整除的数.Eratosthenes筛选法是一种计算质数的有效方法.这个算法的第一步就是写下所有从2至某个上限之间的所有整数.在算法的 ...

  2. 每日一小练——Eratosthenes 筛选法

    上得厅堂.下得厨房,写得代码.翻得围墙,欢迎来到睿不可挡的每日一小练! 题目:Eratosthenes筛选法 内容: 求质数是一个非常普遍的问题,通常不外乎用数去除.除到不尽时,给定的数就是质数.可是 ...

  3. Eratosthenes筛选法构造1-n 素数表

    筛选法:对于不超过n的每个非负整数p,删除2p,3p,4p...当处理完所有数之后,还没没删除的就是素数. 代码中进行了相应的优化. 本代码功能,输入一个数,输出从1-该数之间的素数.功能待完善,可将 ...

  4. Eratosthenes筛选法

    说到素数,最基本的算是一百以内的那些数了.这些数在数学竟赛中常常会被用到.比如说有这样一道题:“一百以内有多少在加2后仍然是素数的素数?”11和17就是这样的素数.如果对素数很熟悉的话,就能迅速得出答 ...

  5. [经典算法] Eratosthenes筛选求质数

    题目说明: 除了自身之外,无法被其它整数整除的数称之为质数,要求质数很简单,但如何快速的求出质数则一直是程式设计人员与数学家努力的课题,在这边介绍一个著名的 Eratosthenes求质数方法. 题目 ...

  6. 使用埃拉托色尼筛选法(the Sieve of Eratosthenes)在一定范围内求素数及反素数(Emirp)

    Programming 1.3 In this problem, you'll be asked to find all the prime numbers from 1 to 1000. Prime ...

  7. 筛选实现C++实现筛选法

    每日一贴,今天的内容关键字为筛选实现 筛选法 分析: 筛选法又称筛法,是求不超越自然数N(N>1)的全部质数的一种方法.据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274-19 ...

  8. 算法笔记_012:埃拉托色尼筛选法(Java)

    1 问题描述 Compute the Greatest Common Divisor of Two Integers using Sieve of Eratosthenes. 翻译:使用埃拉托色尼筛选 ...

  9. C++实现筛选法

    筛选法 介绍: 筛选法又称筛法,是求不超过自然数N(N>1)的所有质数的一种方法.据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274-194年)发明的,又称埃拉托斯特尼筛子. ...

随机推荐

  1. 运用SET ANSI_PADDING OFF创建某个字段为自增列的表,以及插入数据

    SET ANSI_PADDING OFFGOPRINT 'Testing with ANSI_PADDING OFF'GO CREATE TABLE WebsitesPaddingOFF (id in ...

  2. iOS NSFileManager

    今天,用到了文件的管理,发现自己又忘得差不多了.屋里有个苍蝇,老是在眼前晃来晃去,好是烦人. 用到了两个地方: 1. 创建文件夹: 2. 移动文件 功能还有很多,今天先总结两个! 1. 创建文件夹: ...

  3. 【转】Android 获得view的宽和高

     转自:http://blog.csdn.net/yangdeli888/article/details/25405263 Android 获得view的宽和高 分类: android 技术点项目20 ...

  4. Eight Popular Open Source Android Game Engines

    https://software.intel.com/en-us/blogs/2012/05/14/eight-popular-open-source-android-game-engines

  5. Ubuntu中Apache修改DocumentRoot(修改网站根目录)

    今天配置好Apache+PHP+MySQL但是apache默认DocumentRoot是/var/www想把它改到我Windows下进行测试的k:/wwwroot把 apache2.conf 翻了好几 ...

  6. msvc库没有安装包,编译选项选择 代码生成 MT【多线程】,C#调用

    参考提过的一个问题,封装VC++动态链接库,C#调用,并将C#程序打包为exe安装包. 感谢大神.

  7. [SharpMap]二叉树索引

    读取shp文件建立二叉树索引的基本思路分析: /// <summary> /// Generates a spatial index for a specified shape file. ...

  8. python之map、filter、reduce、lambda函数

    map map函数根据提供的函数对指定的序列做映射,定义:map(function, sequence[,sequence,...])--->list 例1 >>> map(l ...

  9. Rs2008内存管理策略

    Rs2008 在内存管理方面已经有了很大的改变.主要增加了文件缓存,允许把内存数据卸载到文件缓存中.而Rs2005 都是把数据放到内存中.对于大数据量的报表而言,很容易出现OutOfMemory 错误 ...

  10. Canopy算法聚类

    Canopy一般用在Kmeans之前的粗聚类.考虑到Kmeans在使用上必须要确定K的大小,而往往数据集预先不能确定K的值大小的,这样如果 K取的不合理会带来K均值的误差很大(也就是说K均值对噪声的抗 ...