Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

Source

POJ Monthly--2007.06.03, Huang, Jinsong
 
 
正解:矩乘快速幂+二分
解题报告;
  今天考试T1。
  考场上面推了一个上午的式子,好不容易发现一个,而且是一个log的,结果太复杂了,没调出来。最后没办法了,临时yy了一个两个log的方法,好歹也过了。
  考虑只有两种可能,题目相当于是要求一个前缀和,那么矩乘满足分配律,所以我们可以直接利用前面的结果乘起来就可以了。 
  还是数学题做少了,不会推式子,还是要多练。
 
  当然还有一个log的方法,就是直接倒着做,其余的完全相同。
 
  两个log:
 
 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
#define RG register
int n,k,MOD;
int dui[],tail; struct juz{
LL s[][];
}a,c[],ini,mi[]; inline int getint()
{
RG int w=,q=; char c=getchar(); while((c<'' || c>'') && c!='-') c=getchar();
if (c=='-') q=, c=getchar(); while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline juz jia(juz p,juz q){
juz tmp;
for(RG int i=;i<=n;i++)
for(RG int j=;j<=n;j++)
tmp.s[i][j]=p.s[i][j]+q.s[i][j],tmp.s[i][j]%=MOD;
return tmp;
} inline juz cheng(juz p,juz q){
juz tmp;
for(RG int i=;i<=n;i++) for(RG int j=;j<=n;j++) tmp.s[i][j]=;
for(RG int i=;i<=n;i++)
for(RG int j=;j<=n;j++)
for(RG int l=;l<=n;l++)
tmp.s[i][j]+=p.s[i][l]*q.s[l][j],tmp.s[i][j]%=MOD;
return tmp;
} inline void work(){
n=getint(); k=getint(); MOD=getint();
for(RG int i=;i<=n;i++) for(RG int j=;j<=n;j++) ini.s[i][j]=getint();
while(k>) dui[++tail]=k,k>>=; mi[tail]=ini; c[tail]=ini;
for(RG int i=tail-;i>=;i--) {
mi[i]=cheng(mi[i+],mi[i+]);//每次平方
c[i]=jia(c[i+],cheng(c[i+],mi[i+]));//前面的乘以之前的部分再加上自己可降低复杂度
if(dui[i]&) mi[i]=cheng(mi[i],ini),c[i]=jia(c[i],mi[i]);
}
for(RG int i=;i<=n;i++) { for(RG int j=;j<=n;j++) printf("%lld ",c[].s[i][j]); printf("\n"); }
} int main()
{
work();
return ;
}

一个log:

 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
#define RG register
int n,k,MOD;
int dui[],tail; struct juz{
LL s[][];
}a,c[],ini,mi[]; inline int getint()
{
RG int w=,q=; char c=getchar(); while((c<'' || c>'') && c!='-') c=getchar();
if (c=='-') q=, c=getchar(); while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline juz jia(juz p,juz q){
juz tmp;
for(RG int i=;i<=n;i++)
for(RG int j=;j<=n;j++)
tmp.s[i][j]=p.s[i][j]+q.s[i][j],tmp.s[i][j]%=MOD;
return tmp;
} inline juz cheng(juz p,juz q){
juz tmp;
for(RG int i=;i<=n;i++) for(RG int j=;j<=n;j++) tmp.s[i][j]=;
for(RG int i=;i<=n;i++)
for(RG int j=;j<=n;j++)
for(RG int l=;l<=n;l++)
tmp.s[i][j]+=p.s[i][l]*q.s[l][j],tmp.s[i][j]%=MOD;
return tmp;
} inline void work(){
n=getint(); k=getint(); MOD=getint();
for(RG int i=;i<=n;i++) for(RG int j=;j<=n;j++) ini.s[i][j]=getint();
while(k>) dui[++tail]=k,k>>=; mi[tail]=ini; c[tail]=ini;
for(RG int i=tail-;i>=;i--) {
mi[i]=cheng(mi[i+],mi[i+]);//每次平方
c[i]=jia(c[i+],cheng(c[i+],mi[i+]));//前面的乘以之前的部分再加上自己可降低复杂度
if(dui[i]&) mi[i]=cheng(mi[i],ini),c[i]=jia(c[i],mi[i]);
}
for(RG int i=;i<=n;i++) { for(RG int j=;j<=n;j++) printf("%lld ",c[].s[i][j]); printf("\n"); }
} int main()
{
work();
return ;
}

POJ3233 Matrix Power Series的更多相关文章

  1. [POJ3233]Matrix Power Series 分治+矩阵

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [POJ3233]Matrix Power Series 分治+矩阵 题目大意 A为n×n(n<= ...

  2. POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 27277   Accepted:  ...

  3. POJ3233]Matrix Power Series && [HDU1588]Gauss Fibonacci

    题目:Matrix Power Series 传送门:http://poj.org/problem?id=3233 分析: 方法一:引用Matrix67大佬的矩阵十题:这道题两次二分,相当经典.首先我 ...

  4. POJ3233:Matrix Power Series(矩阵快速幂+二分)

    http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...

  5. POJ3233 Matrix Power Series(矩阵快速幂+分治)

    Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. ...

  6. POJ3233:Matrix Power Series(矩阵快速幂+递推式)

    传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...

  7. POJ-3233 Matrix Power Series 矩阵A^1+A^2+A^3...求和转化

    S(k)=A^1+A^2...+A^k. 保利求解就超时了,我们考虑一下当k为偶数的情况,A^1+A^2+A^3+A^4...+A^k,取其中前一半A^1+A^2...A^k/2,后一半提取公共矩阵A ...

  8. POJ3233 Matrix Power Series(快速幂求等比矩阵和)

    题面 \(solution:\) 首先,如果题目只要我们求\(A^K\) 那这一题我们可以直接模版矩乘快速幂来做,但是它现在让我们求$\sum_{i=1}^{k}{(A^i)} $ 所以我们思考一下这 ...

  9. poj3233 Matrix Power Series(矩阵快速幂)

    题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂. 那么可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵    将 S 取幂,会发现一个特性: Sk +1右上角 ...

随机推荐

  1. 如何修改myeclipse 内存,eclipse.ini中各个参数的作用。

    修改MyEclipse/eclipse文件夹中配置文件eclipse.ini中的内存分配就哦了 =================================== 一般的ini文件设置主要包括以下 ...

  2. homepage左边的导航菜单怎么做的?

    homepage左边的导航菜单怎么做的? 为啥只在homepage页面写了一个div 然后用一个homepage.js来填充这个div  然后用一个外部容器ID作为homepage.js的参数

  3. android studio使用说明

    一.学习的基本配置文档,搞好各种参数的基本配置,熟练使用. C:\Program Files\Java\jdk1.7.0_09\bin   二.problems meet in weather and ...

  4. [转]开发Visual Studio风格的用户界面--MagicLibrary使用指南

    本文的示例代码为可以从这里下载: 1           概述 微软Visual Studio.NET开发工具推出已经好几年了,这个开发工具一推出就以其易用性和强大功能深受开发者的喜爱.尤其是.NET ...

  5. main函数中argc和argv含义

    在main函数中经常可以看到int main(int argc, char ** argv)的函数头,这里的形参int argc, char ** argv究竟是啥含义呢? &1 int ar ...

  6. ubuntu16.04下安装jdk和android studio

    1首先要在JDK官网下载对应的Linux的JDK版本.进入该网站后,先选择Accept License Agreement然后即可下载.本人的Linux系统为ubuntukylin 16.04  64 ...

  7. 各种python环境的问题

    [OS] mac [ERROR] decoder jpeg not available [SOLUTION] $ pip uninstall pillow $ brew install libjpeg ...

  8. Spring 集成 Hibernate 和 Struts 2

    在Spring中集成Hibernate,实际上就是将Hibernate中用到的数据源DataSource. SessionFactory实例(通常使用Hibernate访问数据库时,应用程序会先创建S ...

  9. 在coding上添加ssh-key

    第一步:检查有没有ssh-key 第二步:生成ssh-key 第三步:添加到coding上或者Github上. ls -al ~/.ssh ssh-keygen -t rsa -C "you ...

  10. 访问图片可以使用闭包map

    1 imageView.animationImages = [ UIImage(named:"panda1"), UIImage(named:"panda2") ...