[POJ1157]LITTLE SHOP OF FLOWERS
[POJ1157]LITTLE SHOP OF FLOWERS
试题描述
Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
|
V A S E S |
||||||
|
1 |
2 |
3 |
4 |
5 |
||
|
Bunches |
1 (azaleas) |
7 | 23 | -5 | -24 | 16 |
|
2 (begonias) |
5 | 21 | -4 | 10 | 23 | |
|
3 (carnations) |
-21 |
5 | -4 | -20 | 20 | |
According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.
To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.
输入
- The first line contains two numbers: F, V.
- The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.
- 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
- F <= V <= 100 where V is the number of vases.
- -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.
输出
输入示例
- -
-
- - -
输出示例
数据规模及约定
见“输入”
题解
设 f(i, j) 表示前 i 朵画摆在前 j 个位置,且第 i 束花摆在第 j 个位置的方案数。转移的时候枚举上一束花摆在的位置 k,那么 f(i, j) = max{ f(i-1, k) + Ai,j },状态 O(F·V),转移 O(V),总时间复杂度为 O(F·V2).
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 110
#define oo 2147483647
int n, m, A[maxn][maxn], f[maxn][maxn]; int main() {
n = read(); m = read();
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) A[i][j] = read(); int ans = -oo;
for(int j = 0; j <= m; j++) {
f[1][j] = A[1][j];
if(n == 1) ans = max(ans, f[1][j]);
}
for(int j = 2; j <= m; j++)
for(int i = 2; i <= min(n, j); i++) {
for(int k = 1; k < j; k++) f[i][j] = max(f[i][j], f[i-1][k] + A[i][j]);
if(i == n) ans = max(ans, f[i][j]);
} printf("%d\n", ans); return 0;
}
[POJ1157]LITTLE SHOP OF FLOWERS的更多相关文章
- POJ-1157 LITTLE SHOP OF FLOWERS(动态规划)
LITTLE SHOP OF FLOWERS Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19877 Accepted: 91 ...
- POJ1157 LITTLE SHOP OF FLOWERS DP
题目 http://poj.org/problem?id=1157 题目大意 有f个花,k个瓶子,每一个花放每一个瓶子都有一个特定的美学值,问美学值最大是多少.注意,i号花不能出如今某大于i号花后面. ...
- sgu 104 Little shop of flowers 解题报告及测试数据
104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB 问题: 你想要将你的 ...
- SGU 104. Little shop of flowers (DP)
104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...
- 快速切题 sgu104. Little shop of flowers DP 难度:0
104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...
- 题解 【POJ1157】LITTLE SHOP OF FLOWERS
先把题目意思说一下: 你有F束花,编号为\(1\)~\(F\)(\(1<=F<=100\)),\(V\)个花瓶,编号为\(1\) ~\(V\)(\(1<=V<=100\)), ...
- poj1157LITTLE SHOP OF FLOWERS
Description You want to arrange the window of your flower shop in a most pleasant way. You have F bu ...
- POJ 1157 LITTLE SHOP OF FLOWERS (超级经典dp,两种解法)
You want to arrange the window of your flower shop in a most pleasant way. You have F bunches of flo ...
- [CH5E02] A Little Shop of Flowers
问题描述 You want to arrange the window of your flower shop in a most pleasant way. You have F bunches o ...
随机推荐
- ThinkPHP之验证码的使用
ThinkPHP中已经提供了验证码的生成以及验证的功能.下面介绍如何使用验证码.编程的时候还是采用MVC的方式 View层 <!DOCTYPE html> <html> < ...
- DOM(四)事件流
1.冒泡型事件 浏览器的事件模型分两种:捕获型事件和冒泡型事件.由于ie不支持捕获型事件,所以以下主要以冒泡型事件作为讲解.(dubbed bubbling)冒泡型指事件安装最特定的事件到最不特定的事 ...
- angular的splitter案例学习
angular的splitter案例学习,都有注释了,作为自己的备忘. <!DOCTYPE html> <html ng-app="APP"> <he ...
- ansible 的组件inventory
P44 Ansible 的默认的inventory的是一个静态的ini格式的文件/etc/ansible/hosts. 我们还可以通过ansible_hosts环境变脸指定或者运行ansible和an ...
- OC基础--self关键字&super关键字
PS:OC中的self关键字可以与C#中的this关键字区分记忆,虽然区别还是很大的. OC中的super关键字指的是父类指针 一.self关键字必须了解的知识: 1.使用场合:只能用在方法中(对象方 ...
- Spring-dispatcherServlet
对于分析SpringMVC,其实就是遵循Servlet世界里最简单的法则“init-service-destroy”. 对于分析SpringMVC的初始化流程,就是分析DispatcherServle ...
- 【USACO1.1】Broken Necklace
题意 一个环形项链,有rbw三种珠子,r代表red,b代表blue,w代表white,从任意一个位置断开,两端分别取珠子,同一端取的珠子要相同颜色,w可以染成想要的颜色,即既可当作r也可以当作b,求最 ...
- 【转】Eclipse下导入外部jar包的3种方式
我们在用Eclipse开发程序的时候,经常要用到第三方jar包.引入jar包不是一个小问题,由于jar包位置不清楚,而浪费时间.下面配图说明3种Eclipse引入jar包的方式. 1.最常用的普通 ...
- codevs4927 线段树练习5
题目描述 Description 有n个数和5种操作 add a b c:把区间[a,b]内的所有数都增加c set a b c:把区间[a,b]内的所有数都设为c sum a b:查询区间[a,b] ...
- POJ1979 Red and Black
速刷一道DFS Description There is a rectangular room, covered with square tiles. Each tile is colored eit ...