这题原来以为是某种匹配问题,后来好像说是强连通的问题。

做法:建图,每个方老师和它想要的缘分之间连一条有向边,然后,在给出的初始匹配中反向建边,即如果第i个方老师现在找到的是缘分u,则建边u->i。这样求出所有的强连通分量,每个强连通分量中方老师和缘分的数目一定是相等的,所以每个方老师一定可以找到与他在同一个强连通分量里的缘分,因为强连通分量中每个点都是可达的,某个方老师找到了其强连通分量中的非原配点,则该原配缘分一定可以在强连通分量中找到"新欢"。可以画个图看看。

由于要构造非二分图,缘分的编号从n+1开始,到2n。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#define Mod 1000000007
using namespace std;
#define N 200007 std::vector<int> G[];
int low[],dfn[];
int instk[],bel[];
int n,Time,cnt,res;
stack<int> stk;
int ans[]; void Tarjan(int u)
{
low[u] = dfn[u] = ++Time;
stk.push(u);
instk[u] = ;
for(int i=;i<G[u].size();i++)
{
int v = G[u][i];
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u],low[v]);
}
else if(instk[v])
low[u] = min(low[u],dfn[v]);
}
if(low[u] == dfn[u])
{
cnt++;
int v;
do
{
v = stk.top();
stk.pop();
instk[v] = ;
bel[v] = cnt;
}while(u != v);
}
} void init()
{
memset(G,,sizeof(G));
memset(instk,,sizeof(instk));
memset(bel,-,sizeof(bel));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
Time = cnt = ;
while(!stk.empty())
stk.pop();
} int main()
{
int i,j,u,v,k;
while(scanf("%d",&n)!=EOF)
{
init();
for(i=;i<=n;i++)
{
scanf("%d",&k);
while(k--)
{
scanf("%d",&v);
G[i].push_back(v+n);
}
}
for(i=;i<=n;i++)
{
scanf("%d",&v);
G[v+n].push_back(i);
}
for(i=;i<=n;i++)
{
if(!dfn[i])
Tarjan(i);
}
for(u=;u<=n;u++)
{
k = ;
for(i=;i<G[u].size();i++)
{
v = G[u][i];
if(bel[u] == bel[v])
ans[k++] = v-n;
}
sort(ans,ans+k);
printf("%d",k);
for(i=;i<k;i++)
printf(" %d",ans[i]);
printf("\n");
}
}
return ;
}

UESTC 898 方老师和缘分 --二分图匹配+强连通分量的更多相关文章

  1. UESTC 901 方老师抢银行 --Tarjan求强连通分量

    思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...

  2. poj1904 二分图匹配+强连通分量

    http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...

  3. Luogu3731 HAOI2017新型城市化(二分图匹配+强连通分量)

    将未建立贸易关系看成连一条边,那么这显然是个二分图.最大城市群即最大独立集,也即n-最大匹配.现在要求的就是删哪些边会使最大匹配减少,也即求哪些边一定在最大匹配中. 首先范围有点大,当然是跑个dini ...

  4. UESTC - 900 方老师炸弹 —— 割点

    题目链接:https://vjudge.net/problem/UESTC-900   方老师炸弹 Time Limit: 4000/2000MS (Java/Others)     Memory L ...

  5. hdu 4685 二分匹配+强连通分量

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 题解: 这一题是poj 1904的加强版,poj 1904王子和公主的人数是一样多的,并且给出 ...

  6. hdu 4685(匹配+强连通分量)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 思路:想了好久,终于想明白了,懒得写了,直接copy大牛的思路了,写的非常好! 做法是先求一次最 ...

  7. 【题解】新型城市化 HAOI2017 网络流 二分图最大匹配 强连通分量

    Prelude 好,HAOI2017终于会做一道题了! 传送到洛谷:→_→ 传送到LOJ:←_← 本篇博客链接:(●'◡'●) Solution 首先要读懂题. 考场上我是这样想的QAQ. 我们把每个 ...

  8. UESTC 884 方老师的专题讲座 --数位DP

    定义:cnt[L][K]表示长度为L,最高位为K的满足条件C的个数. 首先预处理出cnt数组,枚举当前长度最高位和小一个长度的最高位,如果相差大于2则前一个加上后一个的方法数. 然后给定n,计算[1, ...

  9. UESTC 885 方老师买表 --状压DP

    将方格的摆放分成两种: 1.水平摆放:此时所占的两个格子都记为1. 2.竖直摆放:此时底下那个格子记为1,上面那个记为0. 这样的话,每行都会有一个状态表示. 定义:dp[i][s]表示考虑已经填到第 ...

随机推荐

  1. NYOJ:题目524 A-B Problem

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=860 My思路: 先用两个字符串储存这两个实数,然后再用另外两个字符串储存去掉符号和前后多 ...

  2. 我见过的几门语言中的hello world

    1.Java public class hello { public static void main(String[] args){ System.out.println("hello w ...

  3. j2ee分布式缓存同步实现方案dlcache v1.0.0

    现成的分布式K/V缓存已经有很多的实现,最主要的比如redis,memcached,couchbase.那为什么我们还要自己去实现呢,在我们解决了分布式系统下大量rpc调用导致的高延时后,我们发现很多 ...

  4. 快速生成PDF书签

    PDF没有书签,就像吃饭没有筷子一样,虽然可以将就,但总不是很方便!现介绍一种快速生成书签的方法. 第一步,打开excel,制作书签目录,前面的一列是书签名称(黑色框),后面一列是PDF页码(红色框) ...

  5. AE用线来分割线面(C#2010+AE10.0… .

    希望指正. 在 ITools 类中,部分方法如下: public override void OnMouseDown(int Button, int Shift, int X, int Y) { if ...

  6. 参加2013中国大数据技术大会(BDTC2013)

    2013年12月5日-6日参加了为期两天的2013中国大数据技术大会(Big Data Technology Conference, BDTC2013),本期会议主题是:“应用驱动的架构与技术 ”.大 ...

  7. 同步推是如何给未越狱的IOS设备安装任意IPA的?

    工作准备: 1. 准备一台MAC 2. 拥有一份299企业证书, 然后按照下面步骤操作: 1. 把xxxx.ipa改成xxx.zip, 解压缩得到Payload文件夹 2. 替换Payload里的em ...

  8. Android 首页图片轮播

    1.网络上的的一个框架,已经在github 上开源 github  : https://github.com/gcgongchao/flashview 相关博客 : http://www.eoeand ...

  9. CocoaPods的使用

    一.安装Cocoapods步骤:(在终端安装) 1.在安装前,需确保已经安装了Ruby环境 mac 下安装Ruby环境步骤: (1).安装RVM $ curl -L https://get.rvm.i ...

  10. iOS多线程-02-GCD

    简介 GCD(Grand Center Dispatch)是Apple为多核的并行运算提出的解决方案,纯C语言 更加适配多核处理器,且自动管理线程的生命周期,使用起来较为方便 GCD通过任务和队列实现 ...