这题原来以为是某种匹配问题,后来好像说是强连通的问题。

做法:建图,每个方老师和它想要的缘分之间连一条有向边,然后,在给出的初始匹配中反向建边,即如果第i个方老师现在找到的是缘分u,则建边u->i。这样求出所有的强连通分量,每个强连通分量中方老师和缘分的数目一定是相等的,所以每个方老师一定可以找到与他在同一个强连通分量里的缘分,因为强连通分量中每个点都是可达的,某个方老师找到了其强连通分量中的非原配点,则该原配缘分一定可以在强连通分量中找到"新欢"。可以画个图看看。

由于要构造非二分图,缘分的编号从n+1开始,到2n。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#define Mod 1000000007
using namespace std;
#define N 200007 std::vector<int> G[];
int low[],dfn[];
int instk[],bel[];
int n,Time,cnt,res;
stack<int> stk;
int ans[]; void Tarjan(int u)
{
low[u] = dfn[u] = ++Time;
stk.push(u);
instk[u] = ;
for(int i=;i<G[u].size();i++)
{
int v = G[u][i];
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u],low[v]);
}
else if(instk[v])
low[u] = min(low[u],dfn[v]);
}
if(low[u] == dfn[u])
{
cnt++;
int v;
do
{
v = stk.top();
stk.pop();
instk[v] = ;
bel[v] = cnt;
}while(u != v);
}
} void init()
{
memset(G,,sizeof(G));
memset(instk,,sizeof(instk));
memset(bel,-,sizeof(bel));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
Time = cnt = ;
while(!stk.empty())
stk.pop();
} int main()
{
int i,j,u,v,k;
while(scanf("%d",&n)!=EOF)
{
init();
for(i=;i<=n;i++)
{
scanf("%d",&k);
while(k--)
{
scanf("%d",&v);
G[i].push_back(v+n);
}
}
for(i=;i<=n;i++)
{
scanf("%d",&v);
G[v+n].push_back(i);
}
for(i=;i<=n;i++)
{
if(!dfn[i])
Tarjan(i);
}
for(u=;u<=n;u++)
{
k = ;
for(i=;i<G[u].size();i++)
{
v = G[u][i];
if(bel[u] == bel[v])
ans[k++] = v-n;
}
sort(ans,ans+k);
printf("%d",k);
for(i=;i<k;i++)
printf(" %d",ans[i]);
printf("\n");
}
}
return ;
}

UESTC 898 方老师和缘分 --二分图匹配+强连通分量的更多相关文章

  1. UESTC 901 方老师抢银行 --Tarjan求强连通分量

    思路:如果出现了一个强连通分量,那么走到这个点时一定会在强连通分量里的点全部走一遍,这样才能更大.所以我们首先用Tarjan跑一遍求出所有强连通分量,然后将强连通分量缩成点(用到栈)然后就变成了一个D ...

  2. poj1904 二分图匹配+强连通分量

    http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...

  3. Luogu3731 HAOI2017新型城市化(二分图匹配+强连通分量)

    将未建立贸易关系看成连一条边,那么这显然是个二分图.最大城市群即最大独立集,也即n-最大匹配.现在要求的就是删哪些边会使最大匹配减少,也即求哪些边一定在最大匹配中. 首先范围有点大,当然是跑个dini ...

  4. UESTC - 900 方老师炸弹 —— 割点

    题目链接:https://vjudge.net/problem/UESTC-900   方老师炸弹 Time Limit: 4000/2000MS (Java/Others)     Memory L ...

  5. hdu 4685 二分匹配+强连通分量

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 题解: 这一题是poj 1904的加强版,poj 1904王子和公主的人数是一样多的,并且给出 ...

  6. hdu 4685(匹配+强连通分量)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 思路:想了好久,终于想明白了,懒得写了,直接copy大牛的思路了,写的非常好! 做法是先求一次最 ...

  7. 【题解】新型城市化 HAOI2017 网络流 二分图最大匹配 强连通分量

    Prelude 好,HAOI2017终于会做一道题了! 传送到洛谷:→_→ 传送到LOJ:←_← 本篇博客链接:(●'◡'●) Solution 首先要读懂题. 考场上我是这样想的QAQ. 我们把每个 ...

  8. UESTC 884 方老师的专题讲座 --数位DP

    定义:cnt[L][K]表示长度为L,最高位为K的满足条件C的个数. 首先预处理出cnt数组,枚举当前长度最高位和小一个长度的最高位,如果相差大于2则前一个加上后一个的方法数. 然后给定n,计算[1, ...

  9. UESTC 885 方老师买表 --状压DP

    将方格的摆放分成两种: 1.水平摆放:此时所占的两个格子都记为1. 2.竖直摆放:此时底下那个格子记为1,上面那个记为0. 这样的话,每行都会有一个状态表示. 定义:dp[i][s]表示考虑已经填到第 ...

随机推荐

  1. Javaweb上下文监听者ServletContextListener

    一个监听类,不是一个servlet或JSP,它能监听ServletContext一生中的两个关键事件:初始化(创建)和撤销.这个类实现了javax.servlet.ServletContextList ...

  2. Linux命令详解之–ls命令

    今天开始为大家介绍下Linux中常用的命令,首先给大家介绍下Linux中使用频率最高的命令--ls命令. 更多Linux命令详情请看:Linux命令速查手册 linux ls命令用于显示指定工作目录下 ...

  3. 转收藏:Git常用命令速查表

    一. Git 常用命令速查 git branch 查看本地所有分支git status 查看当前状态 git commit 提交 git branch -a 查看所有的分支git branch -r ...

  4. Error writing file‘frm‘(Errcode: 28)

    Error writing file‘frm‘(Errcode: 28)   mysql出现这个错误,表示磁盘已经满了,该增加容量了.

  5. 新技能,利用Reflector来修改dll引用

    继上次<ArcObject10.1降级至10.0>又遇到版本降级问题.通常的方式有: 方案一:重新编译 将源代码加载到解决方案中,修改相应dll的版本,比较快捷的方式是多选后,设置属性中特 ...

  6. arcgis安装msi安装包提示"在未标记为正在运行时,调用了RunScript”解决办法

    安装msi安装包提示"在未标记为正在运行时,调用了RunScript”解决办法   windows/temp目录相关权限不对,右击temp文件夹,选择管理员获取所有权限.

  7. JS常用的三种匿名函数

    第一种: var f1=function(p1,p2){ return p1+p2; };//将函数赋值给一个变量 alert(f1(1,3)); 匿名函数没法调用,只能赋值给一个变量,由于是赋值语句 ...

  8. Android项目实战(十):自定义倒计时的TextView

    项目总结 -------------------------------------------------------------------------------------------- 有这 ...

  9. spring和mybatis整合配置

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  10. .NET下的并行开发(案例代码)

    以下主要是通过一个报表处理程序来说明并行开发的方式.对于数据冲突和共享,可以通过对象数组解决.设计到并行的核心代码已用红色标出.在并行程序的处理上,需要把原来串行的子公司变成一个一个类的对象,让所有的 ...