celery详解
Celery详解
1、背景
由于从事区块链钱包相关开发,对于区块链链上资源需要频繁的进行检查同步,在flask项目中,对于celery这个异步任务执行工具,使用的频率算是相当的高,今天,我就来简单总结一下celery的概念和使用方法。
2、形象比喻
Celery是一个异步任务的调度工具,是Distributed Task Queue,分布式任务队列,分布式决定了可以有多个worker的存在,队列表示其是异步操作,即存在一个产生任务提出需求的工头,和一群等着被分配工作的码农。
在python中定义Celery的时候,我们要引入Broker,中文翻译过来就是"中间人"的意思,在这里Broker起到一个中间人的角色,在工头提出任务的时候,把所有的任务放到Broker里面,在Broker的另一头,一群码农等着取出一个个任务准备着手做。
这种模式注定了整个系统会是个开环系统,工头对于码农们把任务做的怎样是不知情的,所以我们要引入Backend来保存每次任务的结果。这个Backend有点像我们的Broker,也是存储信息用的,只不过这里存的是那些任务的返回结果。我们可以选择只让错误执行的任务返回结果到Backend,这样我们取回结果,便可以知道有多少任务执行失败了。
3、celery具体介绍
3.1 Broker
broker是一个消息传输的中间件,它是用来存储生产出来的各种待执行任务的。每当应用程序调用celery的异步任务的时候,会向broker传递消息,而后celery的worker将会取到消息,进行程序执行,broker可以看成是一个消息队列,其中broker的中文意思是经纪人,用来发送和接受信息。这个broker有几个方案可供选择:RabbitMQ(消息队列),Redis(缓存数据库),数据库(不推荐),等等。
3.2 Backend
通常程序发送的消息,发完就完了,可能都不知道对方什么时候接受了,为此,celery实现了一个backend,用于存储这些消息以及celery执行的一些消息和结果,Backend是在Celery的配置中的一个配置项CELERY_RESULT_BACKEND,作用是保存结果和状态,如果你需要跟踪任务的状态,那么需要设置这一项,可以是Database backend,也可以是Cache backend。
对于brokers,官方推荐是rabbitmq和redis,至于backend,就是数据库,为了简单可以都使用redis。在我的项目中,都是使用redis。
4、使用
4.1 celery架构
Celery的架构由消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)三部分组成。
- 消息中间件
Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成,包括RabbitMQ,Redis,MongoDB等
- 任务执行单元
Worker是celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
- 任务结果存储
Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP,redis,memcached,mongodb,SQLAlchemy,Django等
4.2 安装redis+celery
安装Redis,它的安装比较简单:
~$ pip install redis
然后进行配置,一般都在项目的config.py文件里配置:
CELERY_BROKER_URL = "redis://localhost:6379/0"
URL的格式为:redis://:password@hostname:port/db_number
URL Scheme后的所有字段都是可选的,并且默认为localhost的6379端口,也就是redis的默认端口,使用数据库0。
安装Celery:
~$ pip install celery
4.3 使用Celery
使用celery包含三个方面:1,定义任务函数 2,运行celery服务 3,客户应用程序的调用
创建一个文件tasks.py输入下列代码:
from celery import Celery
broker = "redis://localhost:6379/0"
backend = "redis://localhost:6379/1"
app = Celery("tasks", broker=broker, backend=backend)
@app.task
def add(x, y)
return x + y
上述代码导入了celery,然后创建了celery实例app,实例化的过程中指定了任务名tasks(和文件名一致),传入了broker和backend。然后创建了一个任务函数add。下面启动
celery服务,在当前命令行终端运行:
~$ celery -A tasks worker
目录结构(celery -A tasks worker --loglevel=info这条命令当前工作目录必须和tasks.py所在的目录相同,即进入tasks.py所在目录执行这条命令)
调用delay函数即可启动add这个任务,这个函数的效果是发送一条消息到broker中去,这个消息包括要执行的函数,函数的参数以及其他消息,具体的可以看Celery官方文档。这个时候worker会等待broker中的消息,一旦收到消息就会立刻执行消息。
注意:如果把返回值赋值给一个变量,那么原来的应用程序也会被阻塞,需要等待异步任务返回的结果,因此,实际使用中,不需要把结果赋值。
使用配置文件
Celery的配置比较多,可以在官方配置文档:http://docs.celeryproject.org/en/latest/userguide/configuration.html 查询每个配置项的含义。
4.4 健壮性
上述的使用是简单的配置,下面介绍一个更健壮的方式来使用celery。首先创建一个python包,celery服务,姑且命名为proj。目录文件如下:
|- proj
|-- __init__.py
|-- celery.py # 创建celery实例
|-- config.py # 配置文件
|-- tasks.py # 任务函数
首先是 celery.py
from __future__ import absolute_import
from celery import Celery
app = Celery("proj", include=["proj.tasks"])
app.config_from_object("proj.config")
if __name__ == "__main__":
app.start()
这一次创建app,并没有直接指定broker和backend。而是在配置文件中。
然后是 config.py
from __future__ import absolute_import
BROKER_URL = "redis://localhost:6379/0"
CELERY_BACKEND_URL = "redis://localhost:6379/1"
最后是 tasks.py
from __future__ import absolute_import
from proj.celery import app
@app.task
def add(x, y):
return x + y
使用方法也很简单,在proj的同一级目录执行celery:
celery -A proj worker -l info
现在使用任务也很简单,直接在客户端代码调用proj.tasks里的函数即可。
4.5 定时任务
Scheduler(定时任务,周期性任务)
一种常见的需求是每隔一段时间执行一个任务
在celery中执行定时任务非常简单,只需要设置celery对象的CELERYBEAT_SCHEDULE属性即可。
配置如下 config.py
from __future__ import absolute_import
BROKER_URL = "redis://localhost:6379/0"
CELERY_BACKEND_URL = "redis://localhost:6379/1"
CELERY_TIMEZONE = "Asia/Shanghai"
from datetime import timedelta
CELERYBEAT_SCHEDULE = {
'add-every-30-seconds':{
'task':'proj.tasks.add',
'schedule':timedelta(seconds=30),
'args':(16, 16)
},
}
注意配置文件需要指定时区,这段代码表示每隔30秒执行add函数,一旦使用了scheduler,启动celery需要加上-B参数。
celery -A proj worker -B -l info
对于celery的介绍就到这里了,欢迎交流技术难点。
celery详解的更多相关文章
- Celery详解(3)
1.什么是Celery? Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列,同时也支持任务调度 2.Celery架构 Celery的架构由三部分组成,消息中 ...
- Celery详解(2)
除了redis,还可以使用另外一个神器----Celery.Celery是一个异步任务的调度工具. Celery是Distributed Task Queue,分布式任务队列,分布式决定了可以有多个w ...
- Celery详解(1)
在学习Celery之前,我先简单的去了解了一下什么是生产者消费者模式. 生产者消费者模式 在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是 ...
- 分布式任务队列 Celery —— 详解工作流
目录 目录 前文列表 前言 任务签名 signature 偏函数 回调函数 Celery 工作流 group 任务组 chain 任务链 chord 复合任务 chunks 任务块 mapstarma ...
- Python 定时任务框架 APScheduler 详解
APScheduler 最近想写个任务调度程序,于是研究了下 Python 中的任务调度工具,比较有名的是:Celery,RQ,APScheduler. Celery:非常强大的分布式任务调度框架 R ...
- Sentry 监控 - 私有 Docker Compose 部署与故障排除详解
内容整理自官方开发文档 系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Map ...
- Dockerfile 命令详解及最佳实践
Dockerfile 命令详解 FROM 指定基础镜像(必选) 所谓定制镜像,那一定是以一个镜像为基础,在其上进行定制.就像我们之前运行了一个 nginx 镜像的容器,再进行修改一样,基础镜像是必须指 ...
- Linq之旅:Linq入门详解(Linq to Objects)
示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...
- 架构设计:远程调用服务架构设计及zookeeper技术详解(下篇)
一.下篇开头的废话 终于开写下篇了,这也是我写远程调用框架的第三篇文章,前两篇都被博客园作为[编辑推荐]的文章,很兴奋哦,嘿嘿~~~~,本人是个很臭美的人,一定得要截图为证: 今天是2014年的第一天 ...
随机推荐
- SpringBoot 缓存模块
默认的缓存配置 在诸多的缓存自动配置类中, SpringBoot默认装配的是SimpleCacheConfigguration, 他使用的CacheManager是 CurrentMapCacheMa ...
- Unity经典案例之:Fire Balls 多个圆环以及圆环的变速变向
版权申明: 本文原创首发于以下网站: 博客园『优梦创客』的空间:https://www.cnblogs.com/raymondking123 优梦创客的官方博客:https://91make.top ...
- Selenium + python 测试环境搭建
Windows平台(py3 已经自带了工具包) 准备工具: python.setuptools(python工具基础包).pip(python安装包管理工具) 安装步骤: 1.python安装,运行e ...
- Protocol, Delegate
协议的构成: 协议:用来指定代理双方可以做什么,必须做什么. 代理:根据指定的协议,完成委托方需要实现的功能. 委托:根据指定的协议,指定代理去完成什么功能. 协议的修饰符: 协议有两个修饰符@opt ...
- 图灵学院Java架构师-VIP-【性能调优-Mysql索引数据结构详解与索引优化】
最近报名了图灵学院的架构专题的付费课程,没有赶上6月份开课,中途加入的.错过了多线程的直播课程,只能看录播了
- Django之ORM-model模型关系
模型类关系 1)一对多关系例:图书类-英雄类 models.ForeignKey() 定义在多的类中. 2)多对多关系例:新闻类-新闻类型类 体育新闻 国际新闻models.ManyToManyFie ...
- Git随身手册
Git随身手册 本文是关于Git探索的一篇文章,阐述了Git的大部分命令和使用方式,并列举了几个典型的使用场景以供参考和体会. 对于Git这个分布式的VCS,从链表的角度来看待是最容易理解的: 一次c ...
- JavaScript计算平方数的三种方法
console.log(2*10**3) console.log(2*Math.pow(10,3)) console.log(2e3) console.log(2*1e3) console.log(2 ...
- C/C++ 修改系统时间,导致sem_timedwait 一直阻塞的问题解决和分析
修改系统时间,导致sem_timedwait 一直阻塞的问题解决和分析 介绍 最近修复项目问题时,发现当系统时间往前修改后,会导致sem_timedwait函数一直阻塞.通过搜索了发现int sem_ ...
- 2013-2014 ACM-ICPC Pacific Northwest Regional Contest B.Bones’s Battery
题意略. 思路: 这个题目求的是第一个可行解,由此想到用二分试探的方式来解决. 现在讲讲怎么验证该解是否合理: 先用floyd求出两两之间的最短距离. dp[ i ][ j ]表示,i 到 j 至少要 ...