高性能编程


几个核心问题

• 生成器是怎样节约内存的?
• 使用生成器的最佳时机是什么?
• 我如何使用 itertools 来创建复杂的生成器工作流?
• 延迟估值何时有益,何时无益?

From: https://www.dataquest.io/blog/python-generators-tutorial/

• The basic terminology needed to understand generators

• What a generator is

• How to create your own generators

• How to use a generator and generator methods

• When to use a generator

表示数列

有限数列情况

案例一:xrange,节省内存

自定义xrange使用yield,采用的方法是依次计算。 

目前的range具备了这个特性。 

In [16]: def xrange(start, stop, step=1):
...: while start < stop:
...: yield start
...: start += step
...: In [17]: for i in xrange(1,100):
...: print(i)

无限数列情况

案例二:Fibonacci Sequence

def fibonacci(n):
a, b = 0, 1
while n > 0:
yield b
a, b = b, a + b
n -= 1 def Fibonacci_Yield(n):
# return [f for i, f in enumerate(Fibonacci_Yield_tool(n))]
return list(fibonacci(n))

案例三:fibonacci中有几个奇数

for 循环中的自定义序列。

def fibonacci_transform():
  count = 0
  for f in fibonacci():
    if f > 5000:
      break
    if f % 2 == 1:
      count += 1   return count 

生成器的延时估值

—— 主要关注如何处理大数据,并具备什么优势。

Ref: Python Generators

Big Data. This is a somewhat nebulous term, and so we won’t delve into the various Big Data definitions here. Suffice to say that any Big Data file is too big to assign to a variable.

尤其是List不方便一下子装载到内存的时候。

各种形式的生成器

  • Load beer data in big data.
beer_data = "recipeData.csv"
lines = (line for line in open(beer_data, encoding="ISO-8859-1"))

建议把这里的open事先改为:with ... as。

  • Laziness and generators

Once we ask for the next value of a generator, the old value is discarded.

Once we go through the entire generator, it is also discarded from memory as well.

进化历程

  • Build pipeline

beer_data = "recipeData.csv"
lines = (line for line in open(beer_data, encoding="ISO-8859-1"))  # (1) 获得了“一行”
lists = (l.split(",") for l in lines)   # (2) 对这“一行”进行分解
  • Operation in pipeline

(1) 先获得第一行的title,也就是column将作为key;然后从第二行开始的值作为value。

['BeerID', 'Name', 'URL', ..., 'PrimaryTemp', 'PrimingMethod', 'PrimingAmount', 'UserId\n']

zip()将两个list的元素配对,然后转换为dict。

# 样例模板
beer_data = "recipeData.csv"
lines = (line for line in open(beer_data, encoding="ISO-8859-1"))
lists = (l.split(",") for l in lines)

#-----------------------------------------------------------------------------
# Take the column names out of the generator and store them, leaving only data
columns = next(lists)    # 取第一行单独出来用 # Take these columns and use them to create an informative dictionar
beerdicts = ( dict( zip(columns, line) ) for line in lists )

(2) 一行数据结合一次“标题栏” 构成了一条新的数据。然后,开始统计。

bd["Style"] 作为每一条数据的类别的key,拿来做统计用。

# 遍历每一条,并统计beer的类型
beer_counts = {}
for bd in beerdicts:
if bd["Style"] not in beer_counts:
beer_counts[bd["Style"]] = 1
else:
beer_counts[bd["Style"]] += 1 # 得到beer类型的统计结果:beer_counts
most_popular = 0
most_popular_type = None
for beer, count in beer_counts.items():
if count > most_popular:
most_popular = count
most_popular_type = beer most_popular_type
>>> "American IPA"

# 再通过这个结果,处理相关数据
abv = (float(bd["ABV"]) for bd in beerdicts if bd["Style"] == "American IPA")

质数生成 - prime number


next 结合 yield

定义了一个“内存环保”的计算素数的函数primes()。

def _odd_iter():
n = 1
while True:
n = n + 2
yield n

# 保存一个breakpoint,下次在此基础上计算 def _not_divisible(n):
return lambda x: x % n > 0 # 对每一个元素x 都去做一次处理,参数是n def primes():
yield 2
it
= _odd_iter() # (1).初始"惰性序列"
while True:
n = next(it) # (2).n是在历史记录的基础上计算而得
yield n
it = filter(_not_divisible(n), it) # (3).构造新序列,it代表的序列是无限的; p = primes()
next(p)
next(p)

这里妙在,在逻辑上保证了it代表的序列是个无限序列,但实际上在物理意义上又不可能。

例如,当n = 9时?首选,n不可能等于9,因为后面会“不小心”yield出去。

闭包带来的问题

Stack Overflow: How to explain this “lambda in filter changes the result when calculate primes"

此问题涉及到 Lambda如何使用,以及闭包的风险:[Python] 07 - Statements --> Functions

# odd_iter = filter(not_divisible(odd), odd_iter)  # <--(1)
odd_iter = filter((lambda x: x%odd>0) , odd_iter) # <--(2)

    当yield的这种lazy机制出现时,谨慎使用lambda;注意保护好”内部变量“。

质数生成的"高效方案"

# Sieve of Eratosthenes
# Code by David Eppstein, UC Irvine, 28 Feb 2002
# http://code.activestate.com/recipes/117119/ def gen_primes():
""" Generate an infinite sequence of prime numbers.
"""
# Maps composites to primes witnessing their compositeness.
# This is memory efficient, as the sieve is not "run forward"
# indefinitely, but only as long as required by the current
# number being tested.
#
D = {} # The running integer that's checked for primeness
q = 2 while True:
      print()
      print("loop: {}, {}".format(q, D))
        if q not in D:
# q is a new prime.
# Yield it and mark its first multiple that isn't
# already marked in previous iterations
#
yield q
D[q * q] = [q]
else:
# q is composite. D[q] is the list of primes that
# divide it. Since we've reached q, we no longer
# need it in the map, but we'll mark the next
# multiples of its witnesses to prepare for larger
# numbers
#
for p in D[q]:
D.setdefault(p + q, []).append(p)
print("else: {}, {}".format(q, D))
del D[q]

        q += 1
...

loop: 2, {}
2 loop: 3, {4: [2]}
3 loop: 4, {4: [2], 9: [3]}
else: 4, {4: [2], 9: [3], 6: [2]} loop: 5, {9: [3], 6: [2]}
5 loop: 6, {9: [3], 6: [2], 25: [5]}
else: 6, {9: [3], 6: [2], 25: [5], 8: [2]} loop: 7, {9: [3], 25: [5], 8: [2]}
7 loop: 8, {9: [3], 25: [5], 8: [2], 49: [7]}
else: 8, {9: [3], 25: [5], 8: [2], 49: [7], 10: [2]} loop: 9, {9: [3], 25: [5], 49: [7], 10: [2]}
else: 9, {9: [3], 25: [5], 49: [7], 10: [2], 12: [3]} loop: 10, {25: [5], 49: [7], 10: [2], 12: [3]}
else: 10, {25: [5], 49: [7], 10: [2], 12: [3, 2]} loop: 11, {25: [5], 49: [7], 12: [3, 2]}
11 loop: 12, {25: [5], 49: [7], 12: [3, 2], 121: [11]}
else: 12, {25: [5], 49: [7], 12: [3, 2], 121: [11], 15: [3]}
else: 12, {25: [5], 49: [7], 12: [3, 2], 121: [11], 15: [3], 14: [2]} loop: 13, {25: [5], 49: [7], 121: [11], 15: [3], 14: [2]}
13 loop: 14, {25: [5], 49: [7], 121: [11], 15: [3], 14: [2], 169: [13]}
else: 14, {25: [5], 49: [7], 121: [11], 15: [3], 14: [2], 169: [13], 16: [2]} loop: 15, {25: [5], 49: [7], 121: [11], 15: [3], 169: [13], 16: [2]}
else: 15, {25: [5], 49: [7], 121: [11], 15: [3], 169: [13], 16: [2], 18: [3]} loop: 16, {25: [5], 49: [7], 121: [11], 169: [13], 16: [2], 18: [3]}
else: 16, {25: [5], 49: [7], 121: [11], 169: [13], 16: [2], 18: [3, 2]} loop: 17, {25: [5], 49: [7], 121: [11], 169: [13], 18: [3, 2]}
17 loop: 18, {25: [5], 49: [7], 121: [11], 169: [13], 18: [3, 2], 289: [17]}
else: 18, {25: [5], 49: [7], 121: [11], 169: [13], 18: [3, 2], 289: [17], 21: [3]}
else: 18, {25: [5], 49: [7], 121: [11], 169: [13], 18: [3, 2], 289: [17], 21: [3], 20: [2]} loop: 19, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 21: [3], 20: [2]}
19 loop: 20, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 21: [3], 20: [2], 361: [19]}
else: 20, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 21: [3], 20: [2], 361: [19], 22: [2]} loop: 21, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 21: [3], 361: [19], 22: [2]}
else: 21, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 21: [3], 361: [19], 22: [2], 24: [3]} loop: 22, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 22: [2], 24: [3]}
else: 22, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 22: [2], 24: [3, 2]} loop: 23, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 24: [3, 2]}
23 loop: 24, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 24: [3, 2], 529: [23]}
else: 24, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 24: [3, 2], 529: [23], 27: [3]}
else: 24, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 24: [3, 2], 529: [23], 27: [3], 26: [2]} loop: 25, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 26: [2]}
else: 25, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 26: [2], 30: [5]} loop: 26, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 26: [2], 30: [5]}
else: 26, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 26: [2], 30: [5], 28: [2]} loop: 27, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 30: [5], 28: [2]}
else: 27, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 30: [5, 3], 28: [2]} loop: 28, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 30: [5, 3], 28: [2]}
else: 28, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 30: [5, 3, 2], 28: [2]} loop: 29, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 30: [5, 3, 2]}
29

End.

[Advanced Python] 14 - "Generator": calculating prime的更多相关文章

  1. 【Python注意事项】如何理解python中间generator functions和yield表情

    本篇记录自己的笔记Python的generator functions和yield理解表达式. 1. Generator Functions Python支持的generator functions语 ...

  2. Debug 路漫漫-11:Python: TypeError: 'generator' object is not subscriptable

    调试程序,出现以下错误: Python: TypeError: 'generator' object is not subscriptable “在Python中,这种一边循环一边计算的机制,称为生成 ...

  3. [Advanced Python] 15 - "Metaclass": ORM

    From: 使用元类 动态创建类 与静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的. 一 .type()动态创建 我们说class的定义是运行时动态创建的: 而创建cl ...

  4. 【python之路29】python生成器generator与迭代器

    一.python生成器 python生成器原理: 只要函数中存在yield,则函数就变为生成器函数 #!usr/bin/env python # -*- coding:utf-8 -*- def xr ...

  5. python yield generator 详解

    本文将由浅入深详细介绍yield以及generator,包括以下内容:什么generator,生成generator的方法,generator的特点,generator基础及高级应用场景,genera ...

  6. python enhanced generator - coroutine

    本文主要介绍python中Enhanced generator即coroutine相关内容,包括基本语法.使用场景.注意事项,以及与其他语言协程实现的异同. enhanced generator 在上 ...

  7. python 生成器generator

    关于生成器,主要有以下几个 关键点的内容 一.什么是generator ,为什么要有generator? 二.两种创建生成器方式 三.yield关键字 四.generator 两个调用方法 next( ...

  8. python生成器(generator)、迭代器(iterator)、可迭代对象(iterable)区别

    三者联系 迭代器(iterator)是一个更抽象的概念,任何对象,如果它的类有next方法(next python3)和__iter__方法返回自己本身,即为迭代器 通常生成器是通过调用一个或多个yi ...

  9. 流畅的python 14章可迭代的对象、迭代器 和生成器

    可迭代的对象.迭代器和生成器 迭代是数据处理的基石.扫描内存中放不下的数据集时,我们要找到一种惰性获取数据项的方式,即按需一次获取一个数据项.这就是迭代器模式(Iterator pattern). 迭 ...

随机推荐

  1. n的阶乘尾数有几个0

    /* n!尾数有几个0 */ #include <iostream> using namespace std; void find0(int n); int find(int i,int ...

  2. Leetcode之深度优先搜索(DFS)专题-301. 删除无效的括号(Remove Invalid Parentheses)

    Leetcode之深度优先搜索(DFS)专题-301. 删除无效的括号(Remove Invalid Parentheses) 删除最小数量的无效括号,使得输入的字符串有效,返回所有可能的结果. 说明 ...

  3. Salesforce LWC学习(五) LDS & Wire Service 实现和后台数据交互 & meta xml配置

    之前的几节都是基于前台变量进行相关的操作和学习,我们在项目中不可避免的需要获取数据以及进行DML操作.之前的内容中也有提到wire注解,今天就详细的介绍一下对数据进行查询以及DML操作以及Wire S ...

  4. 从零开始开发IM(即时通讯)服务端

    好消息:IM1.0.0版本已经上线啦,支持特性: 私聊发送文本/文件 已发送/已送达/已读回执 支持使用ldap登录 支持接入外部的登录认证系统 提供客户端jar包,方便客户端开发 github链接: ...

  5. Python 基础 (三)

    字典排序 dict = {'a':1,'c':3,'b':2} 字典没有sort方法,可使用sorted排序,默认通过key排序 dict = sorted(dict),print(dict)key的 ...

  6. 微服务时代之网关相关技术选型及部署(nacos+gateway)

    1.场景描述 因要用到微服务,关于注册中心这块,与同事在技术原型上做了讨论,初步定的方案是使用:阿里巴巴的nacos+springcloud gateway,下面表格是同事整理的注册中心对比,以前用的 ...

  7. 微信小程序获取手机号码看这篇文章就够了

    前言 微信小程序获取手机号码,从官方文档到其他博主的文档 零零散散的 (我就是这样看过来 没有一篇满意的 也许是我搜索姿势不对) 依旧是前人栽树 后人乘凉 系列.保证看完 就可以实现获取手机号码功能 ...

  8. unicode的编码与解码

  9. [python]python中的if, while, for

    python中的代码块,通过缩进对齐,来表达代码逻辑. 1. if语句 if expression1: if_suite elif expression2: elif_suite else: else ...

  10. 牛客小白月赛4 I 合唱队形 思维 字符串

    链接:https://www.nowcoder.com/acm/contest/134/I来源:牛客网 题目描述 铁子的班级在毕业晚会有一个合唱节目,到了毕业晚会的时候,他们必须排成一排一起合唱&qu ...