本文是PyTorch使用过程中的的一些总结,有以下内容:

  • 构建网络模型的方法
  • 网络层的遍历
  • 各层参数的遍历
  • 模型的保存与加载
  • 从预训练模型为网络参数赋值

主要涉及到以下函数的使用

  • add_module,ModulesList,Sequential 模型创建
  • modules(),named_modules(),children(),named_children() 访问模型的各个子模块
  • parameters(),named_parameters() 网络参数的遍历
  • save(),load()state_dict() 模型的保存与加载

构建网络

torch.nn.Module是所有网络的基类,在Pytorch实现的Model都要继承该类。而且,Module是可以包含其他的Module的,以树形的结构来表示一个网络结构。

简单的定义一个网络Model

class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.conv1 = nn.Conv2d(3,64,3)
self.conv2 = nn.Conv2d(64,64,3) def forward(self,x):
x = self.conv1(x)
x = self.conv2(x)
return x

Model中两个属性conv1conv2是两个卷积层,在正向传播的过程中,再依次调用这两个卷积层。

除了使用Model的属性来为网络添加层外,还可以使用add_module将网络层添加到网络中。

class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.conv1 = nn.Conv2d(3,64,3)
self.conv2 = nn.Conv2d(64,64,3) self.add_module("maxpool1",nn.MaxPool2d(2,2))
self.add_module("covn3",nn.Conv2d(64,128,3))
self.add_module("conv4",nn.Conv2d(128,128,3)) def forward(self,x):
x = self.conv1(x)
x = self.conv2(x)
x = self.maxpool1(x)
x = self.conv3(x)
x = self.conv4(x)
return x

add_module(name,layer)在正向传播的过程中可以使用添加时的name来访问改layer。

这样一个个的添加layer,在简单的网络中还行,但是对于负责的网络层很多的网络来说就需要敲很多重复的代码了。 这就需要使用到torch.nn.ModuleListtorch.nn.Sequential

使用ModuleListSequential可以方便添加子网络到网络中,但是这两者还是有所不同的。

ModuleList

ModuleList是以list的形式保存sub-modules或者网络层,这样就可以先将网络需要的layer构建好保存到一个list,然后通过ModuleList方法添加到网络中。

class MyModule(nn.Module):
def __init__(self):
super(MyModule,self).__init__() # 构建layer的list
self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)]) def forward(self,x): # 正向传播,使用遍历每个Layer
for i, l in enumerate(self.linears):
x = self.linears[i // 2](x) + l(x) return x

使用[nn.Linear(10, 10) for i in range(10)]构建要给Layer的list,然后使用ModuleList添加到网络中,在正向传播的过程中,遍历该list

更为方便的是,可以提前配置后,所需要的各个Layer的属性,然后读取配置创建list,然后使用ModuleList将配置好的网络层添加到网络中。 以VGG为例:

vgg_cfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
512, 512, 512, 'M'] def vgg(cfg, i, batch_norm=False):
layers = []
in_channels = i
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
elif v == 'C':
layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return layers class Model1(nn.Module):
def __init__(self):
super(Model1,self).__init__() self.vgg = nn.ModuleList(vgg(vgg_cfg,3)) def forward(self,x): for l in self.vgg:
x = l(x)
m1 = Model1()
print(m1)

读取配置好的网络结构vgg_cfg然后,创建相应的Layer List,使用ModuleList加入到网络中。这样就可以很灵活的创建不同的网络。

这里需要注意的是,ModuleList是将Module加入网络中,需要自己手动的遍历进行每一个Moduleforward

Sequential

一个时序容器。Modules 会以他们传入的顺序被添加到容器中。当然,也可以传入一个OrderedDict一个时序容器。Modules 会以他们传入的顺序被添加到容器中。当然,也可以传入一个OrderedDict

Sequential也是一次加入多个Module到网络中中,和ModuleList不同的是,它接受多个Module依次加入到网络中,还可以接受字典作为参数,例如:

# Example of using Sequential
model = nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
) # Example of using Sequential with OrderedDict
model = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1,20,5)),
('relu1', nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
('relu2', nn.ReLU())
]))

另一个是,Sequential中实现了添加Module的forward,不需要手动的循环调用了。这点相比ModuleList较为方便。

总结

常见的有三种方法来添加子Module到网络中

  • 单独添加一个Module,可以使用属性或者add_module方法。
  • ModuleList可以将一个Module的List加入到网络中,自由度较高,但是需要手动的遍历ModuleList进行forward
  • Sequential按照顺序将将Module加入到网络中,也可以处理字典。 相比于ModuleList不需要自己实现forward

遍历网络结构

可以使用以下2对4个方法来访问网络层所有的Modules

  • modules()named_modules()
  • children()named_children()

modules方法

简单的定义一个如下网络:

class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=3)
self.conv2 = nn.Conv2d(64,64,3)
self.maxpool1 = nn.MaxPool2d(2,2) self.features = nn.Sequential(OrderedDict([
('conv3', nn.Conv2d(64,128,3)),
('conv4', nn.Conv2d(128,128,3)),
('relu1', nn.ReLU())
])) def forward(self,x):
x = self.conv1(x)
x = self.conv2(x)
x = self.maxpool1(x)
x = self.features(x) return x

modules()方法,返回一个包含当前模型所有模块的迭代器,这个是递归的返回网络中的所有Module。使用如下语句

    m = Model()
for idx,m in enumerate(m.modules()):
print(idx,"-",m)

其结果为:

0 - Model(
(conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(features): Sequential(
(conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))
(conv4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(relu1): ReLU()
)
)
1 - Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
2 - Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
3 - MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
4 - Sequential(
(conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))
(conv4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(relu1): ReLU()
)
5 - Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))
6 - Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
7 - ReLU()

输出结果解析:

  • 0-Model 整个网络模块
  • 1-2-3-4 为网络的4个子模块,注意4 - Sequential仍然包含有子模块
  • 5-6-7为模块4 - Sequential的子模块

可以看出modules()是递归的返回网络的各个module,从最顶层直到最后的叶子module。

named_modules()的功能和modules()的功能类似,不同的是它返回内容有两部分:module的名称以及module。

children()方法

modules()不同,children()只返回当前模块的子模块,不会递归子模块。

    for idx,m in enumerate(m.children()):
print(idx,"-",m)

其输出为:

0 - Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
1 - Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
2 - MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
3 - Sequential(
(conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))
(conv4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
(relu1): ReLU()
)

子模块3-Sequential仍然有子模块,children()没有递归的返回。

named_children()children()的功能类似,不同的是其返回两部分内容:模块的名称以及模块本身。

网络的参数

方法parameters()返回一个包含模型所有参数的迭代器。一般用来当作optimizer的参数。

    for p in m.parameters():
print(type(p.data),p.size())

其输出为:

<class 'torch.Tensor'> torch.Size([128, 64, 3, 3])
<class 'torch.Tensor'> torch.Size([128])
<class 'torch.Tensor'> torch.Size([128, 128, 3, 3])
<class 'torch.Tensor'> torch.Size([128])

包含网络中的所有的权值矩阵参数以及偏置参数。 对网络进行训练时需要将parameters()作为优化器optimizer的参数。

optimizer = torch.optim.SGD(m1.parameters(),lr = args.lr,momentum=args.momentum,weight_decay=args.weight_decay)

parameters()返回网络的所有参数,主要是提供给optimizer用的。而要取得网络某一层的参数或者参数进行一些特殊的处理(如fine-tuning),则使用named_parameters()更为方便些。

named_parameters()返回参数的名称及参数本身,可以按照参数名对一些参数进行处理。

以上面的vgg网络为例:

for k,v in m1.named_parameters():
print(k,v.size())

named_parameters返回的是键值对,k为参数的名称 ,v为参数本身。输出结果为:

vgg.0.weight torch.Size([64, 3, 3, 3])
vgg.0.bias torch.Size([64])
vgg.2.weight torch.Size([64, 64, 3, 3])
vgg.2.bias torch.Size([64])
vgg.5.weight torch.Size([128, 64, 3, 3])
vgg.5.bias torch.Size([128])
vgg.7.weight torch.Size([128, 128, 3, 3])
vgg.7.bias torch.Size([128])
vgg.10.weight torch.Size([256, 128, 3, 3])
vgg.10.bias torch.Size([256])
vgg.12.weight torch.Size([256, 256, 3, 3])
vgg.12.bias torch.Size([256])
vgg.14.weight torch.Size([256, 256, 3, 3])
vgg.14.bias torch.Size([256])
vgg.17.weight torch.Size([512, 256, 3, 3])
vgg.17.bias torch.Size([512])
vgg.19.weight torch.Size([512, 512, 3, 3])
vgg.19.bias torch.Size([512])
vgg.21.weight torch.Size([512, 512, 3, 3])
vgg.21.bias torch.Size([512])
vgg.24.weight torch.Size([512, 512, 3, 3])
vgg.24.bias torch.Size([512])
vgg.26.weight torch.Size([512, 512, 3, 3])
vgg.26.bias torch.Size([512])
vgg.28.weight torch.Size([512, 512, 3, 3])
vgg.28.bias torch.Size([512])

参数名的命名规则属性名称.参数属于的层的编号.weight/bias。 这在fine-tuning的时候,给一些特定的层的参数赋值是非常方便的,这点在后面在加载预训练模型时会看到。

模型的保存与加载

PyTorch使用torch.savetorch.load方法来保存和加载网络,而且网络结构和参数可以分开的保存和加载。

  • 保存网络结构及其参数
torch.save(model,'model.pth') # 保存
model = torch.load("model.pth") # 加载
  • 只加载模型参数,网络结构从代码中创建
torch.save(model.state_dict(),"model.pth") # 保存参数
model = model() # 代码中创建网络结构
params = torch.load("model.pth") # 加载参数
model.load_state_dict(params) # 应用到网络结构中

加载预训练模型

PyTorch中的torchvision里有很多常用网络的预训练模型,例如:vgg,resnet,googlenet等,可以方便的使用这些预训练模型进行微调。

# PyTorch中的torchvision里有很多常用的模型,可以直接调用:
import torchvision.models as models resnet101 = models.resnet18(pretrained=True)
alexnet = models.alexnet()
squeezenet = models.squeezenet1_0()

有时候只需要加载预训练模型的部分参数,可以使用参数名作为过滤条件,如下

resnet152 = models.resnet152(pretrained=True)
pretrained_dict = resnet152.state_dict()
"""加载torchvision中的预训练模型和参数后通过state_dict()方法提取参数
也可以直接从官方model_zoo下载:
pretrained_dict = model_zoo.load_url(model_urls['resnet152'])"""
model_dict = model.state_dict()
# 将pretrained_dict里不属于model_dict的键剔除掉
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 更新现有的model_dict
model_dict.update(pretrained_dict)
# 加载我们真正需要的state_dict
model.load_state_dict(model_dict)

model.state_dict()返回一个python的字典对象,将每一层与它的对应参数建立映射关系(如model的每一层的weights及偏置等等)。注意,只有有参数训练的层才会被保存。

上述的加载方式,是按照参数名类匹配过滤的,但是对于一些参数名称无法完全匹配,或者在预训练模型的基础上新添加的一些层,这些层无法从预训练模型中获取参数,需要初始化。

仍然以上述的vgg为例,在标准的vgg16的特征提取后面,新添加两个卷积层,这两个卷积层的参数需要进行初始化。

vgg = torch.load("vgg.pth") # 加载预训练模型

for k,v in m1.vgg.named_parameters():
k = "features.{}".format(k) # 参数名称
if k in vgg.keys():
v.data = vgg[k].data # 直接加载预训练参数
else:
if k.find("weight") >= 0:
nn.init.xavier_normal_(v.data) # 没有预训练,则使用xavier初始化
else:
nn.init.constant_(v.data,0) # bias 初始化为0

PyTorch-网络的创建,预训练模型的加载的更多相关文章

  1. js动态创建的select2标签样式加载不上解决办法

    js动态创建的select2标签样式加载不上:调用select2的select2()函数来初始化一下: js抛出了Uncaught query function not defined for Sel ...

  2. pytorch中修改后的模型如何加载预训练模型

    问题描述 简单来说,比如你要加载一个vgg16模型,但是你自己需要的网络结构并不是原本的vgg16网络,可能你删掉某些层,可能你改掉某些层,这时你去加载预训练模型,就会报错,错误原因就是你的模型和原本 ...

  3. 【小白学PyTorch】5 torchvision预训练模型与数据集全览

    文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.mo ...

  4. Swift微博项目--Swift中通过类名字符串创建类以及动态加载控制器的实现

    Swift中用类名字符串创建类(用到了命名空间) OC中可以直接通过类名的字符串转换成对应的类来操作,但是Swift中必须用到命名空间,也就是说Swift中通过字符串获取类的方式为NSClassFro ...

  5. Android Handler 异步消息处理机制的妙用 创建强大的图片加载类(转)

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/38476887 ,本文出自[张鸿洋的博客] 最近创建了一个群,方便大家交流,群号: ...

  6. React(九)create-react-app创建项目 + 按需加载Ant Design

    (1)create-react-app如何创建项目我前面第一章介绍过了,这里就不过多写了, (2)我们主要来说说按需加载的问题 1. 引入antd npm install antd --save 2. ...

  7. 从整体上理解进程创建、可执行文件的加载和进程执行进程切换,重点理解分析fork、execve和进程切换

    学号后三位<168> 原创作品转载请注明出处https://github.com/mengning/linuxkernel/ 1.分析fork函数对应的内核处理过程sys_clone,理解 ...

  8. 如何用Swift创建一个复杂的加载动画

    现在在苹果应用商店上有超过140万的App,想让你的app事件非常具有挑战的事情.你有这样一个机会,在你的应用的数据完全加载出来之前,你可以通过一个很小的窗口来捕获用户的关注. 没有比这个更好的地方让 ...

  9. DLL动态库的创建,隐式加载和显式加载

    动态库的创建 打开VS,创建如下控制台工程,工程命名为DllTest: 在弹出的对话框中选择"DLL"后单击"完成"按钮: 在工程中新建DllTest.h和Dl ...

随机推荐

  1. 【Luogu P3376】网络最大流

    Luogu P3376 最大流是网络流模型的一个基础问题. 网络流模型就是一种特殊的有向图. 概念: 源点:提供流的节点(入度为0),类比成为一个无限放水的水厂 汇点:接受流的节点(出度为0),类比成 ...

  2. xpath选择兄弟节点、返回上一级和选择多个属性

    本文链接:https://blog.csdn.net/ZincZhang/article/details/80248297选择兄弟节点选择前N位的div标签 preceding-sibling::di ...

  3. python数据分析三个重要方法之:numpy和pandas

    关于数据分析的组件之一:numpy ndarray的属性     4个必记参数:ndim:维度shape:形状(各维度的长度)size:总长度dtype:元素类型   一:np.array()产生n维 ...

  4. DPT-RP1 解锁过程整理

    前言 首先,感谢大神HappyZ ,没有他的教程,没有下文了. 其次,要感谢的是润物 ,没有她的教程, 可能要研究好久才能弄明白大神给的工具怎么用. 本人没接触过python,以为在命令行执行Pyth ...

  5. java Math类常用方法

    package com.niuke.test; public class MathDemo { public static void main(String args[]){ /** * abs求绝对 ...

  6. 配置Tomcat监听80端口、配置Tomcat虚拟主机、Tomcat日志

    6月27日任务 16.4 配置Tomcat监听80端口16.5/16.6/16.7 配置Tomcat虚拟主机16.8 Tomcat日志扩展邱李的tomcat文档 https://www.linuser ...

  7. php 图片指定留白叠加缩放

    遇到这样一个需求:原图大小不一,而且留白也大小不一,需要将原图切出来一个核心图,然后将图片左右留白,组成一个其他尺寸的图片.换句话说,原图在新图片中的位置是可以控制的. 这里思路是:先创建一个规定大小 ...

  8. Spring 之初识IOC和DI

    下载Spring jar包 Spring官网 下载地址 Sping核心jar包 IOC简介 IOC:控制反转,指以前程序自己创建对象,现在将创建对象的控制权交给了第三方(Spring)了 IoC底层实 ...

  9. 物缘科技主导IEEE可信物联网数据管理工作组启动会召开

    2019年10月15日,由物缘科技主导的IEEE标准协会P2144 可信物联网数据管理工作组启动会在香港召开.物联网.区块链技术领域的企业代表和技术专家出席,共同就物联网数据管理.基于区块链的可信数据 ...

  10. 2019-2020-1 20199304《Linux内核原理与分析》第八周作业

    第七章 Linux内核如何装载和启动一个可执行程序 一.知识点 1.ELF(Executable and Linkable Format)概述: "目标文件"指编译器生成的文件,& ...