题目链接:https://ac.nowcoder.com/acm/contest/882/C

来自:山东大学FST_stay_night的的题解,加入一些注释帮助理解神仙代码。

好像题解被套了一次又一次

要学习的地方我觉得是2点:

1.使用dp(贪心)的思想求出每段所在的连续段

2.因为前缀和是连续变化的,可以用lazy标记来代替树状数组来维护。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; #define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); err(_it, args); } void err(istream_iterator<string> it) {
cerr << "\n";
}
template<typename T, typename... Args>
void err(istream_iterator<string> it, T a, Args... args) {
cerr << *it << "=" << a << ", ";
err(++it, args...);
} #define ERR1(arg,n) { cerr<<""<<#arg<<"=\n "; for(int i=1;i<=n;i++) cerr<<arg[i]<<" "; cerr<<"\n"; }
#define ERR2(arg,n,m) { cerr<<""<<#arg<<"=\n"; for(int i=1;i<=n;i++) { cerr<<" "; for(int j=1;j<=m;j++)cerr<<arg[i][j]<<" "; cerr<<"\n"; } } const int INF = 0x3f3f3f3f;
const int MAXN = 10000000, MAXM = 1000000; int l[MAXM + 5], r[MAXM + 5], f[MAXM + 5], g[MAXM + 5];
int sum[MAXN * 3 + 5], b[MAXN * 3 + 5], c[MAXN * 3 + 5]; int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n;
scanf("%d", &n);
for(int i = 1; i <= n; i++)
scanf("%d%d", &l[i], &r[i]);
f[1] = r[1] - l[1] + 1;
//f[i]以i段右端点为结尾的能构造出的最大的前缀和
for(int i = 2; i <= n; i++)
f[i] = max(0, f[i - 1] - (l[i] - r[i - 1] - 1)) + r[i] - l[i] + 1;
//0:以i-1段右端点结尾的能构造出的最大的前缀和都不足够跨过[i-1,i]之间的-1
//f[i - 1] - (l[i] - r[i - 1] - 1):跨过之后还剩下多少贡献给这段
g[n] = r[n] - l[n] + 1;
//g[i]以i段左端点为开头的能构造出的最大的前缀和
for(int i = n - 1; i >= 1; i--)
g[i] = max(0, g[i + 1] - (l[i + 1] - r[i] - 1)) + r[i] - l[i] + 1;
//ERR1(f, n);
//ERR1(g, n);
int i = 1, base = 10000000;
ll ans = 0;
while(i <= n) {
int j = i + 1;
while(j <= n && g[j] + f[j - 1] >= l[j] - r[j - 1] - 1) {
//说明这个[j-1,j]之间的-1段可以因为两侧的f[j-1]和g[j]足够大而连接起来
j++;
}
j--;
//此时j是从i开始最远能够连接到的区间
int left = max(0, l[i] - g[i]), right = min(1000000000 - 1, r[j] + f[j]);
//left,right是至少会产生一个贡献的范围
//ERR(left, right);
int t = i, mi = INF, mx = 0;
sum[0] = 0;
for(int k = left; k <= right; k++) {
//统计这一整段可连接区间的前缀和
if(k >= l[t] && k <= r[t])
sum[k - left + 1] = sum[k - left] + 1;
else
sum[k - left + 1] = sum[k - left] - 1;
if(k == r[t])
t++;
mi = min(mi, sum[k - left + 1] + base);
mx = max(mx, sum[k - left + 1] + base);
//b记录前缀和出现过的次数
b[sum[k - left + 1] + base] ++;
}
//ERR1(sum, right);
//b记录前缀和出现过的次数的后缀和
for(int k = mx - 1; k >= mi; k--)
b[k] += b[k + 1];
//包含最左侧点的贡献
ans += b[base + 1];
for(int k = left; k <= right; k++) {
t = sum[k - left + 1] + base;
//t表示k位置sum的值
//b[t+1]比t大的值的个数
//c[t+1]比在k位置左侧的比t大的值的个数的lazy
b[t + 1] -= c[t + 1]; //把lazy加上去
c[t] += c[t + 1] + 1; //lazy标记下移
c[t + 1] = 0; //清空lazy
ans += b[t + 1];
}
for(int k = mi; k <= mx; k++)
b[k] = 0, c[k] = 0;
i = j + 1;
}
printf("%lld", ans);
return 0;
}

2019牛客暑期多校训练营(第二场) - J - Go on Strike! - 前缀和预处理的更多相关文章

  1. 2019牛客暑期多校训练营(第二场) H-Second Large Rectangle(单调栈)

    题意:给出由01组成的矩阵,求求全是1的次大子矩阵. 思路: 单调栈 全是1的最大子矩阵的变形,不能直接把所有的面积存起来然后排序取第二大的,因为次大子矩阵可能在最大子矩阵里面,比如: 1 0 0 1 ...

  2. 2020牛客暑期多校训练营 第二场 J Just Shuffle 置换 群论

    LINK:Just Shuffle 比较怂群论 因为没怎么学过 置换也是刚理解. 这道题是 已知一个置换\(A\)求一个置换P 两个置换的关键为\(P^k=A\) 且k是一个大质数. 做法是李指导教我 ...

  3. 2020牛客暑期多校训练营 第二场 K Keyboard Free 积分 期望 数学

    LINK:Keyboard Free 我要是会正经的做法 就有鬼了. 我的数学水平没那么高. 三个同心圆 三个动点 求围成三角形面积的期望. 不会告辞. 其实可以\(n^2\)枚举角度然后算出面积 近 ...

  4. 2020牛客暑期多校训练营 第二场 I Interval 最大流 最小割 平面图对偶图转最短路

    LINK:Interval 赛时连题目都没看. 观察n的范围不大不小 而且建图明显 考虑跑最大流最小割. 图有点稠密dinic不太行. 一个常见的trick就是对偶图转最短路. 建图有点复杂 不过建完 ...

  5. 2020牛客暑期多校训练营 第二场 C Cover the Tree 构造 贪心

    LINK:Cover the Tree 最受挫的是这道题,以为很简单 当时什么都想不清楚. 先胡了一个树的直径乱搞的贪心 一直过不去.后来意识到这类似于最经典长链剖分优化贪心的做法 然后那个是求最大值 ...

  6. 2020牛客暑期多校训练营 第二场 B Boundary 计算几何 圆 已知三点求圆心

    LINK:Boundary 计算几何确实是弱项 因为好多东西都不太会求 没有到很精通的地步. 做法很多,先说官方题解 其实就是枚举一个点 P 然后可以发现 再枚举一个点 然后再判断有多少个点在圆上显然 ...

  7. 2020牛客暑期多校训练营 第二场 A All with Pairs 字符串hash KMP

    LINK:All with Pairs 那天下午打这个东西的时候状态极差 推这个东西都推了1个多小时 (比赛是中午考试的我很困 没睡觉直接开肝果然不爽 一开始看错匹配的位置了 以为是\(1-l\)和\ ...

  8. 2019牛客暑期多校训练营(第九场) D Knapsack Cryptosystem

    题目 题意: 给你n(最大36)个数,让你从这n个数里面找出来一些数,使这些数的和等于s(题目输入),用到的数输出1,没有用到的数输出0 例如:3  4 2 3 4 输出:0 0 1 题解: 认真想一 ...

  9. 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题)

    layout: post title: 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题) author: "luowentaoaa" c ...

  10. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

随机推荐

  1. 关于STM32F103+ESP8266+阿里云过程之修改SDK连接至阿里云(二)

    继上篇的阿里云物联云平台设置之后,接下来的工作就是对安信可官方给的sdk进行修改 安信可ESP系列集成环境,SDK,aliyun_mqtt_app,下载地址在上一篇博客,https://www.cnb ...

  2. linux自学

    Linux文件与目录管理   所有不太会的命令,可以用man +命令,查看相关解释文档   绝对路径:从根路径写起的路径,/usr/local 相对路径:例如:路径a:~/demo/test  路径b ...

  3. Java经典编程题

    [程序1]   题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?   //这是一个菲波拉契数列问题p ...

  4. java课堂 动手动脑3

    (1) 该函数没有赋初值再就是如果类提供一个自定义的构造方法,将导致系统不在提供默认的构造方法. (2) public class test { public static void main(Str ...

  5. 初试kafka消息队列中间件一 (只适合初学者哈)

    初试kafka消息队列中间件一 今天闲来有点无聊,然后就看了一下关于消息中间件的资料, 简单一点的理解哈,网上都说的太高大上档次了,字面意思都想半天: 也就是用作消息通知,比如你想告诉某某你喜欢他,或 ...

  6. React 基于antd+video.js实现m3u8格式视频播放及实时切换

    文档连接地址(官网看起麻烦,看中文别人整理好的)https://blog.csdn.net/a0405221/article/details/80923090 React项目使用  安装依赖 npm ...

  7. Go中的并发编程和goroutine

    并发编程对于任何语言来说都不是一件简单的事情.Go在设计之初主打高并发,为使用者提供了goroutine,使用的方式虽然简单,但是用好却不是那么容易,我们一起来学习Go中的并发编程. 1. 并行和并发 ...

  8. Go中的结构体

    前面我们或多或少的都使用了结构体这种数据结构,本身结构体也有很多特性,我们一一来看. 结构体的作用是将一个或者多个任一类型的变量组合在一起的数据类型,类似于我们在Java中class的作用.在结构体重 ...

  9. android ——Tablayout

    Tabs make it easy to explore and switch between different views. 通过TabLayout可以在一个活动中通过滑动或者点击切换到不同的页面 ...

  10. 三层架构(MVC)实现简单登陆注册验证(含验证码)

    前言在我的上一篇微博里我已经提出了登陆的方法,当时我采取的是纯servlet方式,因为当时刚接触到servlet,正好网上没有这方面的全面讲解,所以我就发飙了.不过在现实生产中我们大多采用的三层架构. ...