题目大意:

  求$\sum\limits_{i=1}^n\sum\limits_{j=1}^n[lcm(i,j)>n](n\leq 10^{10})$的值。

题解:

  这题貌似有n多种做法...

  为了更好统计,把原式变为$n^2-\sum\limits_{i=1}^n\sum\limits_{j=1}^n[lcm(i,j)\leq n]$。

  然后开始毒瘤...

  首先,考虑枚举$lcm(i,j)$,设为$d$,计算有多少对$i.j$的最小公倍数为$d$。

  设$i=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$,$tp(i)=k$

  再枚举$gcd(i,j)$,设为$x$,又由于$\frac{i}{gcd(i,j)}$和$\frac{j}{gcd(i,j)}$互质,那么要统计的就是把$\frac{d}{x}$拆成两个互质数的方案数。

  那么简单想一下,方案数就是$2^{tp(\frac{d}{x})}$,因为同一个质因子不能同时出现在两个数中。

  于是答案变为:

    $\sum\limits_{d=1}^n\sum\limits_{x|d}2^{tp(x)}$

  枚举$x$,即$\sum\limits_{x=1}^n2^{tp(x)}\lfloor\frac{n}{x}\rfloor$。

  然后我们发现$\lfloor\frac{n}{x}\rfloor$可以进行数论分块,所以需要求出$2^{tp(x)}$的前$n$项和。

  但是...我不会啊!!

  所以接下来我开始打表,然后我惊奇地发现:

    $2^{tp(x)}=\sum\limits_{t|x}\mu^2(t)$!!!(别问我是怎么发现的)

  带入原式,得:$\sum\limits_{x=1}^n\lfloor\frac{n}{x}\rfloor\sum\limits_{t|x}\mu^2(t)$

  反手枚举$t$,即$\sum\limits_{t=1}^n\mu^2(t)\sum\limits_{x=1}^{n/t}\lfloor\frac{n}{tx}\rfloor$

  另外,$\sum\limits_{i=1}^nd(i)=\sum\limits_{i=1}^n\lfloor\frac{n}{i}\rfloor$,其中$d(i)$表示$i$的约数个数。

  因此答案为:$\sum\limits_{t=1}^n\mu^2(t)\sum\limits_{x=1}^{n/t}d(x)$

  式子结束了,需要调用两层数论分块,还有要预处理出$\mu^2(t)$以及$d(x)$的部分前缀和。

  时间复杂度...我也不知道,大概在$O(n^{\frac{3}{4}})$左右吧...

  

#include<bits/stdc++.h>
#define mod 1000000007
#define ll long long
#define N 20000010
using namespace std;
int pr[N],mu[N],t[N],d[N];
ll n,ans;
bitset<N>vis;
void make(int m)
{
mu[] = d[] = ;
for(int i = ;i<=m;i++)
{
if(!vis[i])pr[++pr[]] = i,mu[i] = -,d[i] = ;
for(int j = ;i*pr[j]<=m;j++)
{
vis[i*pr[j]] = ;
d[i*pr[j]] = d[i]<<;
if(i%pr[j]==){d[i*pr[j]]-=d[i/pr[j]];break;}
mu[i*pr[j]] = -mu[i];
}
}for(int i = ;i<=m;i++)t[i] = t[i-]+mu[i]*mu[i],d[i] = (d[i]+d[i-])%mod;
}
ll S(ll m)//mu^2[i]前缀和
{
if(m<=)return t[m];
ll ret = ,tt = (ll)sqrt(m)+;
for(ll i = ;i<=tt;i++)ret+=mu[i]*(m/i/i);
return ret;
}
ll SS(ll m)//d(i)前缀和
{
if(m<=)return d[m];
ll ret = ,nxt;
for(ll i = ;i<=m;i = nxt+)
{
nxt = m/(m/i);
ret = (ret+(m/i)*(nxt-i+)%mod)%mod;
}return ret;
}
int main()
{
scanf("%lld",&n);
make();
ans = (n%mod)*(n%mod)%mod;
ll nxt;
for(ll i = ;i<=n;i = nxt+)
{
nxt = n/(n/i);
ans = (ans-(S(nxt)-S(i-))%mod*SS(n/i)%mod)%mod;
}printf("%lld\n",(ans+mod)%mod);
return ;
}

2019.10.18模拟赛T3的更多相关文章

  1. 2019.10.02模拟赛T3

    题目大意: 设$S(n,m)$为第二类斯特林数,$F_i$表示斐波那契数列第$i$项. 给定$n,R,K$,求$\sum\limits_{i=1}^{n}(\sum\limits_{m=1}^{R}F ...

  2. [10.18模拟赛] 序列 (DP)

    [10.18模拟赛] 序列 题目描述 山山有一个整数序列s1,s2,-,sn,其中1≤si≤k. 求出有多少个准确移除m个元素后不同的序列.答案模(1e9+7) 输入 输入包括几个测试用例,并且由文件 ...

  3. [10.12模拟赛] 老大 (二分/树的直径/树形dp)

    [10.12模拟赛] 老大 题目描述 因为 OB 今年拿下 4 块金牌,学校赞助扩建劳模办公室为劳模办公室群,为了体现 OI 的特色,办公室群被设计成了树形(n 个点 n − 1 条边的无向连通图), ...

  4. EZ 2018 06 10 NOIP2018 模拟赛(十八)

    好久没写blog&&比赛题解了,最近补一下 这次还是很狗的,T3想了很久最后竟然连并查集都忘写了,然后T2map莫名爆炸. Rating爆减......链接不解释 好了我们开始看题. ...

  5. 体育成绩统计——20180801模拟赛T3

    体育成绩统计 / Score 题目描述 正所谓“无体育,不清华”.为了更好地督促同学们进行体育锻炼,更加科学地对同学们进行评价,五道口体校的老师们在体育成绩的考核上可谓是煞费苦心.然而每到学期期末时, ...

  6. 20180520模拟赛T3——chess

    [问题描述] 小美很喜欢下象棋. 而且她特别喜欢象棋中的马. 她觉得马的跳跃方式很独特.(以日字格的方式跳跃) 小芳给了小美一张很大的棋盘,这个棋盘是一个无穷的笛卡尔坐标. 一开始\(time=0\) ...

  7. 2018.10.17NOIP模拟赛解题报告

    心路历程 预计得分:\(100 + 100 +100\) 实际得分:\(100 + 100 + 60\) 辣鸡模拟赛.. 5min切掉T1,看了一下T2 T3,感觉T3会被艹爆因为太原了.. 淦了20 ...

  8. 【2019.10.7 CCF-CSP-2019模拟赛 T3】未知的数组(unknown)(并查集+动态规划)

    预处理 考虑模数\(10\)是合数不好做,所以我们可以用一个常用套路: \(\prod_{i=l}^ra_i\equiv x(mod\ 10)\)的方案数等于\(\prod_{i=l}^ra_i\eq ...

  9. 【2019.8.6 慈溪模拟赛 T3】集合(set)(线段树上DP)

    线段树上\(DP\) 首先发现,每个数肯定是向自己的前驱或后继连边的. 则我们开一棵权值线段树,其中每一个节点记录一个\(f_{0/1,0/1}\),表示在这个区间左.右端点是否连过边的情况下,使这个 ...

随机推荐

  1. ES6-Proxy,代理

    proxy 代理 Es6 增强 对象和函数(方法)   Proxy用于修改某些操作的默认行为,即对编程语言层面进行修改,属于“元编程”, Proxy意思为“代理”,即在访问对象之前建立一道“拦截”,任 ...

  2. iOS----------jenkins

    错误日志: ERROR: Error fetching remote repo 'origin' Finished: FAILURE ERROR: Error cloning remote repo ...

  3. 20190608_浅谈go&java差异(三)

    20190608_浅谈go&java差异(三) 转载请注明出处https://www.cnblogs.com/funnyzpc/p/10990703.html 第三节内容概览 多线程通讯(线程 ...

  4. Linux系统学习 十九、VSFTP服务—虚拟用户访问—为每个虚拟用户建立自己的配置文件,单独定义权限

    为每个虚拟用户建立自己的配置文件,单独定义权限 可以给每个虚拟用户单独建立目录,并建立自己的配置文件.这样方便单独配置权限,并可以单独指定上传目录 1.修改配置文件 vi /etc/vsftpd/vs ...

  5. 七、3Dslicer的坐标系

    一.参考博客 https://blog.csdn.net/Huadong_eddy/article/details/84988166

  6. 使用webstrom开发小程序要做的设置

    1.关闭rpx的错误提示 在setting里面  -->搜索inspections --> 在右侧找到invalid CSS property value    把对勾划掉

  7. Redis与Redis 伪集群环境的搭建

    一 .准备工作 GCC编译环境 ruby运行环境 安装ruby脚本运行包 二.环境安装 1.GCC环境 首先,因为redis是由C语言编写的,所以需要安装GCC环境,可以用 gcc -v 命令来检查是 ...

  8. go语言之map

    go语言的map就相当于python的dict 1.map的初始化 //创建map //k的类型是int,v的类型是string var test25_1 map[int]string fmt.Pri ...

  9. HttpModules配置事项

    前沿:还是那句话 ASP.NET管道,浏览器 - isAPI32.dll - HttpModules - HttpHandler - 返回客户端Web.Config:<httpModules&g ...

  10. js写个小时钟

    原生js写个小时钟 一.代码 今天美化博客园自学的哈,分享一下 <!--标题变成时钟--> <div id="Header1_HeaderTitle">&l ...