2019.10.18模拟赛T3
题目大意:
求$\sum\limits_{i=1}^n\sum\limits_{j=1}^n[lcm(i,j)>n](n\leq 10^{10})$的值。
题解:
这题貌似有n多种做法...
为了更好统计,把原式变为$n^2-\sum\limits_{i=1}^n\sum\limits_{j=1}^n[lcm(i,j)\leq n]$。
然后开始毒瘤...
首先,考虑枚举$lcm(i,j)$,设为$d$,计算有多少对$i.j$的最小公倍数为$d$。
设$i=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$,$tp(i)=k$
再枚举$gcd(i,j)$,设为$x$,又由于$\frac{i}{gcd(i,j)}$和$\frac{j}{gcd(i,j)}$互质,那么要统计的就是把$\frac{d}{x}$拆成两个互质数的方案数。
那么简单想一下,方案数就是$2^{tp(\frac{d}{x})}$,因为同一个质因子不能同时出现在两个数中。
于是答案变为:
$\sum\limits_{d=1}^n\sum\limits_{x|d}2^{tp(x)}$
枚举$x$,即$\sum\limits_{x=1}^n2^{tp(x)}\lfloor\frac{n}{x}\rfloor$。
然后我们发现$\lfloor\frac{n}{x}\rfloor$可以进行数论分块,所以需要求出$2^{tp(x)}$的前$n$项和。
但是...我不会啊!!
所以接下来我开始打表,然后我惊奇地发现:
$2^{tp(x)}=\sum\limits_{t|x}\mu^2(t)$!!!(别问我是怎么发现的)
带入原式,得:$\sum\limits_{x=1}^n\lfloor\frac{n}{x}\rfloor\sum\limits_{t|x}\mu^2(t)$
反手枚举$t$,即$\sum\limits_{t=1}^n\mu^2(t)\sum\limits_{x=1}^{n/t}\lfloor\frac{n}{tx}\rfloor$
另外,$\sum\limits_{i=1}^nd(i)=\sum\limits_{i=1}^n\lfloor\frac{n}{i}\rfloor$,其中$d(i)$表示$i$的约数个数。
因此答案为:$\sum\limits_{t=1}^n\mu^2(t)\sum\limits_{x=1}^{n/t}d(x)$
式子结束了,需要调用两层数论分块,还有要预处理出$\mu^2(t)$以及$d(x)$的部分前缀和。
时间复杂度...我也不知道,大概在$O(n^{\frac{3}{4}})$左右吧...
#include<bits/stdc++.h>
#define mod 1000000007
#define ll long long
#define N 20000010
using namespace std;
int pr[N],mu[N],t[N],d[N];
ll n,ans;
bitset<N>vis;
void make(int m)
{
mu[] = d[] = ;
for(int i = ;i<=m;i++)
{
if(!vis[i])pr[++pr[]] = i,mu[i] = -,d[i] = ;
for(int j = ;i*pr[j]<=m;j++)
{
vis[i*pr[j]] = ;
d[i*pr[j]] = d[i]<<;
if(i%pr[j]==){d[i*pr[j]]-=d[i/pr[j]];break;}
mu[i*pr[j]] = -mu[i];
}
}for(int i = ;i<=m;i++)t[i] = t[i-]+mu[i]*mu[i],d[i] = (d[i]+d[i-])%mod;
}
ll S(ll m)//mu^2[i]前缀和
{
if(m<=)return t[m];
ll ret = ,tt = (ll)sqrt(m)+;
for(ll i = ;i<=tt;i++)ret+=mu[i]*(m/i/i);
return ret;
}
ll SS(ll m)//d(i)前缀和
{
if(m<=)return d[m];
ll ret = ,nxt;
for(ll i = ;i<=m;i = nxt+)
{
nxt = m/(m/i);
ret = (ret+(m/i)*(nxt-i+)%mod)%mod;
}return ret;
}
int main()
{
scanf("%lld",&n);
make();
ans = (n%mod)*(n%mod)%mod;
ll nxt;
for(ll i = ;i<=n;i = nxt+)
{
nxt = n/(n/i);
ans = (ans-(S(nxt)-S(i-))%mod*SS(n/i)%mod)%mod;
}printf("%lld\n",(ans+mod)%mod);
return ;
}
2019.10.18模拟赛T3的更多相关文章
- 2019.10.02模拟赛T3
题目大意: 设$S(n,m)$为第二类斯特林数,$F_i$表示斐波那契数列第$i$项. 给定$n,R,K$,求$\sum\limits_{i=1}^{n}(\sum\limits_{m=1}^{R}F ...
- [10.18模拟赛] 序列 (DP)
[10.18模拟赛] 序列 题目描述 山山有一个整数序列s1,s2,-,sn,其中1≤si≤k. 求出有多少个准确移除m个元素后不同的序列.答案模(1e9+7) 输入 输入包括几个测试用例,并且由文件 ...
- [10.12模拟赛] 老大 (二分/树的直径/树形dp)
[10.12模拟赛] 老大 题目描述 因为 OB 今年拿下 4 块金牌,学校赞助扩建劳模办公室为劳模办公室群,为了体现 OI 的特色,办公室群被设计成了树形(n 个点 n − 1 条边的无向连通图), ...
- EZ 2018 06 10 NOIP2018 模拟赛(十八)
好久没写blog&&比赛题解了,最近补一下 这次还是很狗的,T3想了很久最后竟然连并查集都忘写了,然后T2map莫名爆炸. Rating爆减......链接不解释 好了我们开始看题. ...
- 体育成绩统计——20180801模拟赛T3
体育成绩统计 / Score 题目描述 正所谓“无体育,不清华”.为了更好地督促同学们进行体育锻炼,更加科学地对同学们进行评价,五道口体校的老师们在体育成绩的考核上可谓是煞费苦心.然而每到学期期末时, ...
- 20180520模拟赛T3——chess
[问题描述] 小美很喜欢下象棋. 而且她特别喜欢象棋中的马. 她觉得马的跳跃方式很独特.(以日字格的方式跳跃) 小芳给了小美一张很大的棋盘,这个棋盘是一个无穷的笛卡尔坐标. 一开始\(time=0\) ...
- 2018.10.17NOIP模拟赛解题报告
心路历程 预计得分:\(100 + 100 +100\) 实际得分:\(100 + 100 + 60\) 辣鸡模拟赛.. 5min切掉T1,看了一下T2 T3,感觉T3会被艹爆因为太原了.. 淦了20 ...
- 【2019.10.7 CCF-CSP-2019模拟赛 T3】未知的数组(unknown)(并查集+动态规划)
预处理 考虑模数\(10\)是合数不好做,所以我们可以用一个常用套路: \(\prod_{i=l}^ra_i\equiv x(mod\ 10)\)的方案数等于\(\prod_{i=l}^ra_i\eq ...
- 【2019.8.6 慈溪模拟赛 T3】集合(set)(线段树上DP)
线段树上\(DP\) 首先发现,每个数肯定是向自己的前驱或后继连边的. 则我们开一棵权值线段树,其中每一个节点记录一个\(f_{0/1,0/1}\),表示在这个区间左.右端点是否连过边的情况下,使这个 ...
随机推荐
- Cesium专栏-卫星轨迹
Cesium Cesium 是一款面向三维地球和地图的,世界级的JavaScript开源产品.它提供了基于JavaScript语言的开发包,方便用户快速搭建一款零插件的虚拟地球Web应用,并在性能,精 ...
- simple go web application & 二维码生成 & 打包部署
go语言简易web应用 & 二维码生成及解码 & 打包部署 转载请注明出处: https://www.cnblogs.com/funnyzpc/p/10801476.html 前言(闲 ...
- java之对象类型转换
基本数据类型之间的转换: 自动类型转换:小的数据类型可以自动转换成大的数据类型: 强制类型转换:可以把大的数据类型转换成小的数据类型:float = (float)32.0; public class ...
- Redis缓存与数据库一致性解决方案
背景 缓存是数据库的副本,应用在查询数据时,先从缓存中查询,如果命中直接返回,如果未命中,去数据库查询最新数据并返回,同时写入缓存. 缓存能够有效地加速应用的读写速度,同时也可以降低后端负载.是应用架 ...
- 解决 vscode 中 nuget 插件无法获取包版本的问题
解决 vscode 中 nuget 插件无法获取包版本的问题 1.问题描述 大概在今年的7月份左右,我忽然发现 NuGet Package Manager 拓展没法正常使用了,只能查询到包: 选完包之 ...
- JAVA描述算法和数据结构(01):稀疏数组和二维数组转换
本文源码:GitHub·点这里 || GitEE·点这里 一.基本简介 1.基础概念 在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时,则称该矩阵为稀疏矩阵:与之相反, ...
- 什么是StatefulSet
简单说来,StatefulSet其实就是一种升级版的Deployment,大体工作原理如下 1.为每个Pod名字按顺序编号,按顺序启动 # kubectl get po -o wide -l app= ...
- Python 关于 pip 部分相关库的安装
下文中“:”后面安装的安装语句需要打开 cmd (命令提示符),在 cmd 中输入. 示例: 在搜索框输入 cmd,单机命令提示符: 然后输入安装语句,按回车键: 因为我之前已经装过了,所以这里显示的 ...
- 记录一次Mac VSCode运行Grpc模板项目
1.使用dotnet new grpc -o GrpcGreeter && cd GrpcGreeter && code . ,进入项目文件中,使用code .使用vs ...
- spring常用注解整理
参看大佬博客https://www.cnblogs.com/xiaoxi/p/5935009.html