【bzoj3601】一个人的数论(莫比乌斯反演+拉格朗日插值)
题意:
求$$
\sum_{i=1}{n}id[gcd(i,n)=1]
思路:
我们对上面的式子进行变换,有:
\]
\begin{aligned}
&\sum_{i=1}^{n}i[gcd(i,n)=1]\
=&\sum_{i=1}^{n}i\sum_{x|gcd(i,n)}\mu (x)\
=&\sum_{i=1}^n i\sum_{x|i,x|n}\mu(x)\
=&\sum_{x|n}\mu(x)xd\sum_{i=1}{\frac{n}{x}}i^d
\end{aligned}
以上都是一些套路,接下来才步入正题。
因为形如$\sum_{i=1}^n i^d$这种都是一个以$n$为自变量的,最高项次数为$d+1$的多项式。
到这步后,我们将后面的形式化,即将多项式表示出来,设$a_i$为相关系数,那么就有式子等于:
\]
\sum_{x|n}\mu(x)xd\sum_{i=0}{d+1}a_i\lfloor\frac{n}{x}\rfloor^i
\]
\sum_{i=0}{d+1}a_i\sum_{x|n}\mu(x)xd\lfloor\frac{n}{x}\rfloor^i
这里面前面的$a_i$为多项式的系数,是未知的。
但其实因为我们知道多项式的形式为$\sum_{i=0}^{d+1}a_ix^i$,我们可以直接把$x=1,x=2,\cdots,x=d+1$的值求出来,然后高斯消元求解系数。
这里也可以利用拉格朗日插值来求解,代码是直接抄[yyb](https://www.cnblogs.com/cjyyb/p/10503174.html)(orz)的,思路应该是利用一下等式来求系数:
\]
\sum_{i=0}^n y_i\prod_{i!=j}\frac{x-x_j}{x_i-x_j}
那么现在主要就是后面一部分的计算,我们令$f(x)=\mu(x)x^d,g(x)=x^i$,那么后面一部分可以写为:$\sum_{x|n}f(x)g(\frac{n}{x})$,这是狄利克雷卷积的的形式,因为$f,g$都为积性,那么$h=f*g(n)$也为积性。
所以$h(n)=\sum_{x|n}\mu(x)x^d\lfloor\frac{n}{x}\rfloor^i$也为积性函数,那么我们可以考虑单独素因子的贡献。显然每个素因子只会出现$0$次或者$1$次,否则贡献为$0$,那么有:
\]
\begin{aligned}
h(pa)&=\sum_{j=0}{a}\mu(pj)p{jd}(\frac{pa}{pj})^i\
&=p{ai}-p{ai}p^{d-i}
\end{aligned}
那么对于每个$i,0\leq i\leq d+1$,求出相应的$h(n)$,再与系数相乘最终结果就出来了。
感觉解法中将多项式形式化出来的想法很巧妙!没想到多项式还能这么用hhh,直接求解多项式的系数也是之前没想到的。之后对卷积的观察也很重要。
很好的一个题。细节参考代码:
```cpp
/*
* Author: heyuhhh
* Created Time: 2019/11/21 19:44:08
*/
#include <bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
#define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
void err() { std::cout << '\n'; }
template<typename T, typename...Args>
void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
#define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 1000 + 5, MOD = 1e9 + 7;
ll qpow(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return ans;
}
//求d次多项式系数
struct Lagrange {
ll f[N], a[N], b[N];
int d;
void init(int _d) {
d = _d;
//y_i
for(int i = 1; i <= d + 1; i++) f[i] = (f[i - 1] + qpow(i, d - 1)) % MOD;
b[0] = 1;
}
void work() {
for(int i = 0; i <= d; i++) {
for(int j = i + 1; j; j--) b[j] = (b[j - 1] + MOD - 1ll * b[j] * (i + 1) % MOD) % MOD;
b[0] = 1ll * b[0] * (MOD - i - 1) % MOD;
}
for(int i = 0; i <= d; i++) {
int s = f[i + 1], inv = qpow(i + 1, MOD - 2);
for(int j = 0; j <= d; j++) if(i != j) s = 1ll * s * qpow((i - j + MOD) % MOD, MOD - 2) % MOD;
b[0] = 1ll * b[0] * (MOD - inv) % MOD;
for(int j = 1; j <= d + 1; j++) b[j] = (MOD - 1ll * (b[j] + MOD - b[j - 1]) * inv % MOD) % MOD;
for(int j = 0; j <= d + 1; j++) a[j] = (a[j] + 1ll * s * b[j]) % MOD;
for(int j = d + 1; j; j--) b[j] = (b[j - 1] + MOD - 1ll * b[j] * (i + 1) % MOD) % MOD;
b[0] = 1ll * b[0] * (MOD - i - 1) % MOD;
}
}
}A;
int d, w;
ll prod[N];
void run(){
A.init(d + 1);
A.work();
for(int i = 0; i <= d + 1; i++) prod[i] = 1;
while(w--) {
int p, a; cin >> p >> a;
for(int i = 0; i <= d + 1; i++) {
ll res = (qpow(p, 1ll * a * i) - qpow(p, 1ll * a * i + d) * qpow(qpow(p, i), MOD - 2) % MOD + MOD) % MOD;
prod[i] = prod[i] * res % MOD;
}
}
ll ans = 0;
for(int i = 0; i <= d + 1; i++) ans = (ans + A.a[i] * prod[i] % MOD) % MOD;
cout << ans << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
while(cin >> d >> w) run();
return 0;
}
```\]
【bzoj3601】一个人的数论(莫比乌斯反演+拉格朗日插值)的更多相关文章
- BZOJ3601 一个人的数论 莫比乌斯反演、高斯消元/拉格朗日插值
传送门 题面图片真是大到离谱-- 题目要求的是 \(\begin{align*}\sum\limits_{i=1}^N i^d[gcd(i,n) == 1] &= \sum\limits_{i ...
- [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]
题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元
题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...
- 【BZOJ4176】Lucas的数论 莫比乌斯反演
[BZOJ4176]Lucas的数论 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)) ...
- 51Nod1675 序列变换 数论 莫比乌斯反演
原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)= ...
- UOJ#62. 【UR #5】怎样跑得更快 数论 莫比乌斯反演
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ62.html 题解 太久没更博客了,该拯救我的博客了. $$\sum_{1\leq j \leq n} \ ...
- [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元
Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
随机推荐
- ubuntu 18.04下安装JDK
一.安装前检查 检查是否已经安装 java -version 二.安装方式 1)通过ppa(源) 2)通过官网安装包安装 JDK官网下载地址 或百度云下载地址,提取码 rzq5 三.安装步骤 (一 ...
- RabbitMQ学习笔记(五、RabbitMQ集群)
目录: RabbitMQ集群 镜像队列 RabbitMQ服务日志 RabbitMQ分布式部署 高可用集群 RabbitMQ集群: 1.集群中组件的状态 首先MQ一定要是一个高可用的中间件所以集群肯定是 ...
- 第四章 返回结果的HTTP状态码
第四章 返回结果的HTTP状态码 HTTP状态码负责表示客户端HTTP请求的返回结果.标记服务端的处理是否正常.通知出现的错误等. 1.状态码的类别 2. 2XX成功 200 OK 表示服务端已正常 ...
- Docker&K8S&持续集成与容器管理--系列教程
前言 网络虚拟化 一 Docker简介 Docker介绍 → B站视频链接 Docker架构 → B站视频链接 二 Docker安装 Ubuntu Docker 安装 CentOS Docker ...
- golang:exported function Script should have comment or be unexported
当自己定义的包被外部使用时,如果不遵循一定的规范,那么会出现讨厌的绿色纹条,还会警告: 虽然不会影响运行,但是也令人讨厌,那么如何解决这个问题呢? 为结构体或者变量或者方法添加注释,并且开头必须是结构 ...
- vue中的父子组件相互调用
vue中的父子组件相互调用: 1.vue子组件调用父组件方法:子组件:this.$emit('xx'); 父组件:定义yy方法,并在引用子组件时传参,如@xx="yy" 2.vue ...
- 使用celery执行Django串行异步任务
Django项目有一个耗时较长的update过程,希望在接到请求运行update过程的时候,Django应用仍能正常处理其他的请求,并且update过程要求不能并行,也不能漏掉任何一个请求 使用cel ...
- nodejs通过钉钉群机器人推送消息
nodejs 通过钉钉群机器人推送消息 Intro 最近在用 nodejs 写爬虫,之前的 nodejs 爬虫代码用 js 写的,感觉可维护性太差,也没有智能提示,于是把js改用ts(typescri ...
- Python中文件操作2——shutil模块
1 文件操作 文件有很多的操作,之前的文件操作中介绍了内建函数对文件的打开.读取以及写入,这三种操作是对文件基本的使用.文件还有复制.删除.移动.改变文件的属主属组等操作.下面主要看os模块和shut ...
- GitHub 2019年年度报告:Python最受欢迎,VScode贡献者高达19.1K
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 开源最前线(ID:OpenSourceTop) PS:如有需要Pyt ...