MATLAB粒子群优化算法(PSO)

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

一、介绍

  • 粒子群优化算法(Particle Swarm Optimization Algorithm)是一种群智能算法,为了寻求全局最优。群体迭代,粒子在解空间追随最优的粒子进行搜索。
  • 粒子群算法的思想源于对鸟群捕食行为的研究,模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法。
  • 马良教授在他的著作《蚁群优化算法》一书的前言中写到:“自然界的蚁群、鸟群、鱼群、羊群、牛群、蜂群等,其实时时刻刻都在给予我们以某种启示,只不过我们常常忽略了大自然对我们的最大恩赐!”
  • 设想这样一个场景:一群鸟在随机搜索食物,已知
  • (1)在这块区域里只有一块食物;  (2)所有的鸟都不知道食物在哪里;  (3)但它们能感受到当前的位置离食物还有多远.
  • 那么:找到食物的最优策略是什么呢?
  • 搜寻目前离食物最近的鸟的周围区域,根据自己飞行的经验判断食物的所在。

  • PSO的基础: 信息的社会共享

二、算法思路

  1. 每个寻优的问题解都被想像成一只鸟,称为“粒子”。所有粒子都在一个D维空间进行搜索。
  2. 所有的粒子都由一个fitness function 确定适应值以判断目前的位置好坏。
  3. 每一个粒子必须赋予记忆功能,能记住所搜寻到的最佳位置。
  4. 每一个粒子还有一个速度以决定飞行的距离和方向。这个速度根据它本身的飞行经验以及同伴的飞行经验进行动态调整。

三、算法流程与伪代码

  • c1: weight of local information
  • c2: weight of global information
  • p: particle's position
  • v: path direction
  • rand: random variable, 0<rand<1
  • number of particles: 10~50
  • c1+c2=4
  • v=v+c1*rand*(pbest-p)+c2*rand*(gbest-p);中右边第一项v: inertia, c1*rand*(pbest-p): personal influence, c2*rand*(gbest-p): social influence.

四、MATLAB程序

粒子群优化算法求解函数y=x+x*sin(x)在[-10, 10]的最大值.

pso.m

function [best_x, best_y]=pso()
%find the max value of a function
%Author: kailugaji https://www.cnblogs.com/kailugaji/
posMax=10;posMin=-10; %range of feasible solution
x=posMin:0.1:posMax;
y=my_fun(x); %object function
plot(x,y);hold on; %plot function
popsize=30; %number of particles
max_iter=100; %maximum number of iterations
position=rand(popsize,1);
position=position*20-ones(popsize,1)*10; %particle's position
vMax=1;vMin=-1; %range of velocity
velosity=2*rand(popsize,1)-1; %path direction
pbest=position; %current optimum
gbest=position(1); %global optimum
wBegin=1;wEnd=0.05;
c1=2; %weight of local information
c2=2; %weight of global information
for i=1:max_iter
position_new=position+velosity; %change direction of each particle
velosity_new=(wEnd+(wBegin-wEnd)*(100-i)/100).*velosity+c1*rand().*(position-pbest.*ones(popsize,1))+c2*rand().*(position-gbest.*ones(popsize,1)); %inertia+personal influence+social influence
for j=1:popsize
if(position_new(j)>posMax)
position_new(j)=posMax;
end
if(position_new(j)<posMin)
position_new(j)=posMin;
end
if(velosity_new(j)>vMax)
velosity_new(j)=vMax;
end
if(velosity_new(j)<vMin)
velosity_new(j)=vMin;
end
if(my_fun(position_new(j))>my_fun(pbest(j)))
pbest(j)=position_new(j);
end
if(my_fun(position_new(j))>my_fun(gbest))
gbest=position_new(j);
end
end
position=position_new;
velosity=velosity_new;
end
plot(gbest,my_fun(gbest),'or');
best_x=gbest;
best_y=my_fun(gbest);

my_fun.m

function y=my_fun(x)
y=x+x.*sin(x);

五、实验结果

>> [best_x, best_y]=pso()
best_x =
8.0051
best_y =
15.9190

当x=8.0051时,粒子群优化算法终止迭代,此时获得的最大值为y=15.9190。

六、参考文献

MATLAB粒子群优化算法(PSO)的更多相关文章

  1. 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(二)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 前面我们介绍了特征选择(Feature S ...

  2. 粒子群优化算法PSO及matlab实现

    算法学习自:MATLAB与机器学习教学视频 1.粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群 ...

  3. 数值计算:粒子群优化算法(PSO)

    PSO 最近需要用上一点最优化相关的理论,特地去查了些PSO算法相关资料,在此记录下学习笔记,附上程序代码.基础知识参考知乎大佬文章,写得很棒! 传送门 背景 起源:1995年,受到鸟群觅食行为的规律 ...

  4. 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 在机器学习中,离散化(Discretiza ...

  5. 粒子群优化算法(PSO)的基本概念

    介绍了PSO基本概念,以及和遗传算法的区别: 粒子群算法(PSO)Matlab实现(两种解法)

  6. 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(四)

    作者:Geppetto 前面我们介绍了特征选择(Feature Selection,FS)与离散化数据的重要性,介绍了PSO在FS中的重要性和一些常用的方法.FS与离散化的背景,介绍了EPSO与PPS ...

  7. 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(三)

    作者:Geppetto 前面我们介绍了特征选择(Feature Selection,FS)与离散化数据的重要性,总览的介绍了PSO在FS中的重要性和一些常用的方法,介绍了FS与离散化的背景,介绍本文所 ...

  8. [matlab] 6.粒子群优化算法

    粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群体智能的优化算法,该算法最早由Kennedy和Eberhart在19 ...

  9. 计算智能(CI)之粒子群优化算法(PSO)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...

随机推荐

  1. udp协议,进程(同步,异步)

    udp协议与进程 一.udp协议 QQ聊天室 #- sever import socket #socket.SOCK_DGRAM--->UPD协议 sever = socket.socket(t ...

  2. 微信小程序官方文档中表单组建button部分有关function(type)中type的个人理解

    官方文档关于button组件的简介 xml页面挺容易理解,但js部分起初对整体写的形式都不太理解,随着逐渐阅读代码基本理解了 xml页面代码: <button type="defaul ...

  3. scp 拷贝 针对软连接的问题

    scp时经常把软连接变成拷贝了两遍,rsync -l可以避免这个问题 1. ln 软连接的scp 我们在系统中,经常用到软连接:当我们从远程机器scp  数据时,这个软连接不会cp过来:而是: 把软连 ...

  4. CodeForces 862B(思维+二分图染色)

    题意 https://vjudge.net/problem/CodeForces-862B 给出n个点,n-1条边,求再最多再添加多少边使得二分图的性质成立 思路 因为题目是求的最多添加多少边,所以可 ...

  5. Python自动化报错:IndentationError-unindent does not match any outer indentation level

    ​从错误中了解python语法: 如下图: 这个是因为python语句块是由格式来控制(缩进): 解决: 出现这个问题需要看下,自己写的python语句块是否格式缩进的问题 例如:如下图:构造函数前面 ...

  6. JAVA学习路线,实战开发

     Java基础课程内容包含:Java开发介绍.Java数组.Java面向对象.常用基础类.集合.IO流.多线程.异常.反射.  第一部分:Java开发介绍  1. DOS常用命令  2. JVM.JR ...

  7. property用法,使Python中的get方法和set方法使用更简单

    方法一: class a: def __init__(self): self.__num = 1              #定义一个私有变量(以双下划线开头的是私有变量) def getNum(se ...

  8. 7.8 Structured Streaming

    一.Spark流计算组件的演进   二.Structured Streaming的基本原理 Structured Streaming将数据建模成一个结构化的数据表DataFrame,后到达的数据就是一 ...

  9. MQ的幂等性和解决方案

    1.幂等性 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同.通俗的讲就一个数据,或者一个请求,给你重复来多次,你得确保对应的数据是不会改变的,不能出错:类似于数据库中的乐 ...

  10. k8s发布文件记录

    1.环境变量配置项 apiVersion: v1 # api版本 kind: ConfigMap # 配置项 metadata: name: common-key-svc # 名字 namespace ...