Luogu P1439

令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列

可以得到状态转移方程:

if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1;
dp[i][j]=max(dp[i][j],dp[i-1][j],dp[i][j-1]);

时空复杂度都为O(n2)

对于本题这种做法显然是无法接受的。

我们可以对这个题目进行转化。仔细看题,可以发现a,b两个序列都是1-n的排列。

那么,我们可以利用映射,将a中的数一一映射成为1,2,3,4,5……,n

再把b中的数一一对应更改。由于a中的数是升序的,所以b中的最长上升子序列的长度就是a与b的最长公共子序列。LCS问题就转化成了LIS问题。

例如样例

a的 3 2 1 4 5映射为1 2 3 4 5

则b从1 2 3 4 5变为3 2 1 4 5

结合上面的分析就会变得很容易理解了。

#include<algorithm>
#include<cstdio>
using namespace std;
int n,a[100005],b[100005],k[100005],dp[100005],ans;
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
k[a[i]]=i;
}
for (int i=1;i<=n;i++)
{
scanf("%d",&b[i]);
b[i]=k[b[i]];
}
dp[1]=1;
for (int i=2;i<=n;i++)
{
for (int j=1;j<i;j++)
{
if (b[i]>b[j]) dp[i]=max(dp[i],dp[j]+1);
else dp[i]=max(1,dp[i]);
}
}
for (int i=1;i<=n;i++)
ans=max(ans,dp[i]);
printf("%d",ans);
return 0;
}

这个动态规划可以很轻松地写出来,但是我们发现时间还是不够优秀。

那么我们就要对这个算法进行优化。对于LIS问题,有一种广为人知的O(nlogn)的解法。

dp[i]中存储长度为i的LIS的最后一个数。

如果符合单调上升就直接增长长度并记录,否则就利用STL二分查找出dp数组中第一个大于b[i]的位置,替换它。

举个例子,例如 3 6 2 4 7 8

一开始的序列{3},接着变成{3,6}

遇到2之后我们将3替换{2,6},为什么可以进行替换呢?

因为后面还有一个4可以替换掉6,构成一条更优的序列。(保证结尾尽可能小,就能保证序列尽可能优)

如果后面没有4呢?那么也没有关系,因为这个2即使修改了也对答案没有任何影响。

(想一想为什么)

dp[1]=b[1];
len=1;
for (int i=2;i<=n;i++)
{
if (b[i]>dp[len]) dp[++len]=b[i];//记录并增长长度。
else
{
int x=upper_bound(dp+1,dp+1+len,b[i])-dp;
dp[x]=b[i];
//利用STL二分查找出dp数组中第一个大于b[i]的位置,替换它。
} }

完整代码如下:

#include<algorithm>
#include<cstdio>
using namespace std;
int n,a[100005],b[100005],k[100005],dp[100005],ans,len;
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
k[a[i]]=i;//映射
}
for (int i=1;i<=n;i++)
{
scanf("%d",&b[i]);
b[i]=k[b[i]];//对应修改
}
dp[1]=b[1];
len=1;
for (int i=2;i<=n;i++)
{
if (b[i]>dp[len]) dp[++len]=b[i];
else
{
int x=upper_bound(dp+1,dp+1+len,b[i])-dp;
dp[x]=b[i];
}
}
printf("%d",len);
return 0;
}

【Luogu P1439】最长公共子序列(LCS)的更多相关文章

  1. Luogu 3402 最长公共子序列(二分,最长递增子序列)

    Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: ...

  2. 1006 最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...

  3. 动态规划之最长公共子序列LCS(Longest Common Subsequence)

    一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...

  4. 编程算法 - 最长公共子序列(LCS) 代码(C)

    最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...

  5. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  6. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  7. 51Nod 1006:最长公共子序列Lcs(打印LCS)

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  8. 51nod 1006 最长公共子序列Lcs 【LCS/打印path】

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  9. 每日一题-——最长公共子序列(LCS)与最长公共子串

    最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...

  10. 51nod 1006:最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

随机推荐

  1. 谜一样的Java编码和Windows编码

    本文适用于Java源码用UTF-8编码,平台系统为Windows的情况 不管是maven,还是javac,你的IDE都会带上一个参数:-Dfile.encoding=UTF-8 Windows(或许W ...

  2. [NOI2001]食物链(并查集拓展域)&& [HAOI2006]旅行(Kruskal)

    题目描述 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A 吃 B,B 吃 C,C 吃 A. 现有 N 个动物,以 1 - N 编号.每个动物都是 A,B,C 中的一种,但是我 ...

  3. K8s 还是 k3s?This is a question

    本文来自:Rancher Labs 自k3s问世以来,社区里有许多小伙伴都问过这样的问题"除了中间的数字之外,k3s和K8s的区别在哪里?","在两者之间应该如何选择?& ...

  4. Application,Session,Cookie,ViewState,Cache对象用法、作用域的区别

    1.Application:用于保存所有用户共用的数据信息.在Asp.Net中类似的配置数据最好保存在Web.config文件中.如果使用Application对象,一个需要考虑的问题是任何写操作都要 ...

  5. ansible剧本之playbook操作

    ansible 剧本 yaml介绍: 是一个编程语言 文件后缀名 yaml yml 数据对应格式: 字典: key: value 列表: [] - ansible-playbook命令格式 执行顺序: ...

  6. Nmap的一些常用的nse脚本

    转自freebuf.com/  点击跳转 在这篇文章中,我们将研究最著名的渗透工具之一 Nmap 一款标志性的跨平台扫描器.它的原意为Network Mapper(网络映射器),具有相当强大的扫描功能 ...

  7. 「刷题」GERALD07加强版

    是LCT了. 首先我们不知道联通块怎么数. 然后颓标签知道了是LCT. 那么考虑一下怎么LCT搞. 有一个很普遍的思路大家也应该都知道,就是如何求一个区间中某种颜色的个数. 这个可以很简单的用主席树来 ...

  8. NOIP模拟 32

    我在31反思中膜拜过了B哥 没想到这次又... 我给老姚家丢脸了...STO 首先T1暴力就写挂了... 贪图从$n^3$*$2^n$优化成$n^2$*$2^n$然后打错了 哗哗的扔分 而且正解都想不 ...

  9. centos下docker离线部署

    安装准备 Docker可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化. 环境要求 Centos 安装包下载地址 安装包下载以下 ...

  10. python 快速发送大量邮件

    因为公司需求,需要发送千万封级别邮件. # coding:utf-8 import csv import smtplib from email.mime.text import MIMEText im ...