本文并不是详细介绍yolo工作原理以及改进发展的文章,只用做作者本人回想与提纲。

1.yolo是什么

  输入一张图片,输出图片中检测到的目标和位置(目标的边框)

yolo名字含义:you only look once

对于yolo这个神经网络:

(Assume  s*s栅格, n类可能对象, anchor box数量为B)

Input       448*448*3

Output     s*s*(5 * B +n)的tensor

2.CNN目标检测之yolo

在目标检测领域,DPM方法采用滑动窗口检测法将原图片切出一小块一小块,先选区再卷积提取特征,先整张图卷积提取特征再选区,然后投入神经网络进行图像分类操作处理。RCNN方法采用region proposal来生成整张图像中可能包含待检测对象的可能的bounding boxes然后用分类器评估这些boxes,再post processing来改善bounding box并消除重复的目标,最后基于整个场景中其他物体重新对boxes打分(这些环节都是分开训练)。其实都是把目标检测问题转化成了一个分类问题。2015年yolo论文公开,提出了一种新思路,将目标检测问题转化成了一个regression problem。Yolo 从输入的图像,仅仅经过一个神经网络直接得到bounding box和每个bounding box所属类别的概率。正因为整个过程下来只有一个神经网络,所以它可以进行端到端的优化。

Yolo优缺点:速度极快;在背景上预测出不存在物体的概率要低;能够学习抽象的特征,可用于艺术画像等。但定位偶尔出现错误。

3.Unified Detection

先分s*s个栅格;

每一个栅格预测B个bounding boxes以及每个bboxes的confidence score。

Confidence score =P(Object) * IOUtruth_pred

若bbox包含物体,则P(Object)=1,否则为0

每一个栅格预测n个条件类别概率P(Classi|Object)——在一个栅格包含一个Object的前提下它属于某个类的概率。为每一个栅格预测一组类概率。

在测试的非极大值抑制阶段,对于每个栅格:将每个bbox的置信度和类概率相乘,

class-specific confidence scores=Confidence * P(Classi|Object) = P(classi) * IOU,

结果既包含了类别信息又包含了对bbox值的准确度。然后设置一个阈值,把低分的滤掉,剩下的投给非极大值抑制,然后得到最终标定框。

4.模型训练

  首先预训练一个分类网络。在 ImageNet 1000-class competition dataset上预训练一个分类网络,这个网络是Figure3中的前20个卷机网络+average-pooling layer(平均池化层)+ fully connected layer(全连接层) (此时网络输入是224*224)。

  然后训练我们的检测网络。转换模型去执行检测任务,《Object detection networks on convolutional feature maps》提到说在预训练网络中增加卷积和全链接层可以改善性能。在作者的例子基础上添加4个卷积层和2个全链接层,随机初始化权重。检测要求细粒度的视觉信息,所以把网络输入把224*224变成448*448。

5.损失函数

CNN之yolo目标检测算法笔记的更多相关文章

  1. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

  2. 深度学习笔记之目标检测算法系列(包括RCNN、Fast RCNN、Faster RCNN和SSD)

    不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. •   RCNN RCN ...

  3. 目标检测算法的总结(R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD、FNP、ALEXnet、RetianNet、VGG Net-16)

    目标检测解决的是计算机视觉任务的基本问题:即What objects are where?图像中有什么目标,在哪里?这意味着,我们不仅要用算法判断图片中是不是要检测的目标, 还要在图片中标记出它的位置 ...

  4. (六)目标检测算法之YOLO

    系列文章链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  5. 基于候选区域的深度学习目标检测算法R-CNN,Fast R-CNN,Faster R-CNN

    参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-C ...

  6. 基于深度学习的目标检测算法:SSD——常见的目标检测算法

    from:https://blog.csdn.net/u013989576/article/details/73439202 问题引入: 目前,常见的目标检测算法,如Faster R-CNN,存在着速 ...

  7. Python实现YOLO目标检测

    作者:R语言和Python学堂 链接:https://www.jianshu.com/p/35cfc959b37c 1. 什么是目标检测? YOLO目标检测的一个示例 啥是目标检测? 拿上图 (用YO ...

  8. 深度剖析目标检测算法YOLOV4

    深度剖析目标检测算法YOLOV4 目录 简述 yolo 的发展历程 介绍 yolov3 算法原理 介绍 yolov4 算法原理(相比于 yolov3,有哪些改进点) YOLOV4 源代码日志解读 yo ...

  9. 如何使用 pytorch 实现 SSD 目标检测算法

    前言 SSD 的全称是 Single Shot MultiBox Detector,它和 YOLO 一样,是 One-Stage 目标检测算法中的一种.由于是单阶段的算法,不需要产生所谓的候选区域,所 ...

随机推荐

  1. 《阿里巴巴Java开发手册1.4.0》阅读总结与心得(一)

    前言 下面是阿里对<阿里巴巴 Java 开发手册>(下称<手册>)的介绍: 凝聚了阿里集团很多同学的知识智慧和经验,这些经验甚至是用血淋淋的故障换来的,希望前车之鉴,后车之师, ...

  2. python中的全局变量

    1. 在函数中定义的局部变量如果和全局变量同名,则会使用局部变量(即隐藏全局变量). 示例: x = 1 def func(): x = 2 print x func() print x 运行结果: ...

  3. E-Explorer_2019牛客暑期多校训练营(第八场)

    题意 n个点,m条边,u,v,l,r表示点u到点v有一条边,且只有编号为\([l,r]\)的人能通过,问从点1到点n有哪些编号的人能通过 题解 先对\(l,r\)离散化,用第七场找中位数那题同样的形式 ...

  4. HDU 5919 - Sequence II (2016CCPC长春) 主席树 (区间第K小+区间不同值个数)

    HDU 5919 题意: 动态处理一个序列的区间问题,对于一个给定序列,每次输入区间的左端点和右端点,输出这个区间中:每个数字第一次出现的位子留下, 输出这些位子中最中间的那个,就是(len+1)/2 ...

  5. CF - 652 E Pursuit For Artifacts 边双联通

    题目传送门 题解总结起来其实很简单. 把所有的边双联通分量缩成一个点,然后建立好新边, 然后再从起点搜到终点就好了. 代码: /* code by: zstu wxk time: 2019/02/23 ...

  6. 【LeetCode】75-颜色分类

    题目描述 给定一个包含红色.白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色.白色.蓝色顺序排列. 此题中,我们使用整数 0. 1 和 2 分别表示红色.白色 ...

  7. 《MySQL实战45讲》学习笔记3——InnoDB为什么采用B+树结构实现索引

    索引的作用是提高查询效率,其实现方式有很多种,常见的索引模型有哈希表.有序列表.搜索树等. 哈希表 一种以key-value键值对的方式存储数据的结构,通过指定的key可以找到对应的value. 哈希 ...

  8. 剖析nsq消息队列(二) 去中心化代码源码解析

    在上一篇帖子剖析nsq消息队列(一) 简介及去中心化实现原理中,我介绍了nsq的两种使用方式,一种是直接连接,还有一种是通过nslookup来实现去中心化的方式使用,并大概说了一下实现原理,没有什么难 ...

  9. 转载unity编辑器xml数据库插件

    unity编辑器xml数据库插件 注:9月9日更新,其中MyXML.cs中有一句代码写错,查找功能失误,文中已经修改! 注:9月1日更新说明:xml存储结构,因为在用xml之前不知道正规的xml数据结 ...

  10. .Net基础篇_学习笔记_第七天_计算质数(找出0-100以内说有质数)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...